Publications by authors named "Wilai Noonpakdee"

The need to develop new effective antimalarial agents is urgent due to the rapid emergence of drug resistance to all current drugs by the most virulent human malaria parasite, Plasmodium falciparum. A promising avenue is in the development of antimalarials based on RNA interference targeting expression of malaria parasite vital genes, viz. DNA topoisomerase II gene (PfTOP2).

View Article and Find Full Text PDF

Purpose: To investigate the impact of CYP2D6 and CYP2C19 polymorphisms in predicting tamoxifen efficacy and clinical outcomes in Thai breast cancer patients.

Methods: Polymorphisms of CYP2D6 and CYP2C19 were genotyped by the AmpliChip™ CYP450 Test (Roche Molecular Diagnostics, Branchburg, NJ, USA) for 57 patients, who were matched as recurrent versus non-recurrent breast cancers (n = 33 versus n = 24, respectively, with a 5-year follow-up).

Results: Based on the genotype data, five CYP2D6 predicted phenotype groups were identified in this study including homozygous extensive metabolizer (13 of 57, 22.

View Article and Find Full Text PDF

New effective antimalarial agents are urgently needed due to increasing drug resistance of Plasmodium falciparum. Phosphorothioate antisense oligodeoxynucleotides (ODNs) silencing of malarial topoisomerase II gene have shown to possess promising features as anti malarial agents. In order to improve stability and to increase intracellular penetration, ODNs were complexed with the biodegradable polymer chitosan to form solid nanoparticles with an initial diameter of approximately 55 nm.

View Article and Find Full Text PDF

Antimalarial 9-anilinoacridines are potent inhibitors of parasite DNA topoisomerase II both in vitro and in situ. 3,6-diamino substitution on the acridine ring greatly improves parasiticidal activity against Plasmodium falciparum by targeting DNA topoisomerase II. A series of 9-anilinoacridines were investigated for their abilities to inhibit beta-hematin formation, to form drug-hematin complexes, and to enhance hematin-induced lysis of red blood cells.

View Article and Find Full Text PDF

The development of new effective antimalarial agents is urgently needed due to the ineffectiveness of current drug regimes on the most virulent human malaria parasite Plasmodium falciparum. Antisense (AS) oligodeoxynucleotides (ODNs) have shown promise as chemotherapeutic agents. Phosphorothioate AS ODNs against different regions of P.

View Article and Find Full Text PDF