In contrast to blood-oxygenation level-dependent (BOLD) functional MRI (fMRI), which relies on changes in blood flow and oxygenation levels to infer brain activity, diffusion fMRI (DfMRI) investigates brain dynamics by monitoring alterations in the apparent diffusion coefficient (ADC) of water. These ADC changes may arise from fluctuations in neuronal morphology, providing a distinctive perspective on neural activity. The potential of ADC as an fMRI contrast (ADC-fMRI) lies in its capacity to reveal neural activity independently of neurovascular coupling, thus yielding complementary insights into brain function.
View Article and Find Full Text PDFThe original HTML version of this Article had an incorrect Published online date of 25 December 2019; it should have been 21 March 2019. This has been corrected in the HTML version of the Article. The PDF version was correct from the time of publication.
View Article and Find Full Text PDFGiven the recent controversies in some neuroimaging statistical methods, we compare the most frequently used functional Magnetic Resonance Imaging (fMRI) analysis packages: AFNI, FSL and SPM, with regard to temporal autocorrelation modeling. This process, sometimes known as pre-whitening, is conducted in virtually all task fMRI studies. Here, we employ eleven datasets containing 980 scans corresponding to different fMRI protocols and subject populations.
View Article and Find Full Text PDF