Publications by authors named "Wijs I"

Article Synopsis
  • A study was conducted on 150 pediatric neurology patients who underwent exome sequencing, finding that 103 remained undiagnosed, with efforts made to improve the diagnosis rate five years later through re-evaluation strategies.
  • The study revealed that ad hoc re-evaluation led to 18 new diagnoses, while systematic re-evaluation provided an additional 14, raising the overall diagnostic yield from 31% to 53% in this patient cohort.
  • Key findings highlighted that many of the successful re-evaluations occurred in patients who had not recontacted their referring clinicians, suggesting a need for more proactive follow-up in clinical care.
View Article and Find Full Text PDF

Hearing impairment (HI) is genetically heterogeneous which hampers genetic counseling and molecular diagnosis. Testing of several single HI-related genes is laborious and expensive. In this study, we evaluate the diagnostic utility of whole-exome sequencing (WES) targeting a panel of HI-related genes.

View Article and Find Full Text PDF

Purpose: To determine the efficacy of multiple versions of a commercially available arrayed primer extension (APEX) microarray chip for autosomal recessive retinitis pigmentosa (arRP).

Methods: We included 250 probands suspected of arRP who were genetically analyzed with the APEX microarray between January 2008 and November 2013. The mode of inheritance had to be autosomal recessive according to the pedigree (including isolated cases).

View Article and Find Full Text PDF

Variants in ABCA4 are responsible for autosomal-recessive Stargardt disease and cone-rod dystrophy. Sequence analysis of ABCA4 exons previously revealed one causative variant in each of 45 probands. To identify the "missing" variants in these cases, we performed multiplex ligation-dependent probe amplification-based deletion scanning of ABCA4.

View Article and Find Full Text PDF

Purpose: Retinitis pigmentosa (RP) is a clinically and genetically heterogeneous retinal disorder. Despite tremendous knowledge about the genes involved in RP, little is known about the genetic causes of RP in Indonesia. Here, we aim to identify the molecular genetic causes underlying RP in a small cohort of Indonesian patients, using genome-wide homozygosity mapping.

View Article and Find Full Text PDF

Wnt signaling is a crucial component of the cell machinery orchestrating a series of physiological processes such as cell survival, proliferation, and migration. Among the plethora of roles that Wnt signaling plays, its canonical branch regulates eye organogenesis and angiogenesis. Mutations in the genes encoding the low density lipoprotein receptor protein 5 (LRP5) and frizzled 4 (FZD4), acting as coreceptors for Wnt ligands, cause familial exudative vitreoretinopathy (FEVR).

View Article and Find Full Text PDF

Purpose: To describe the ophthalmic characteristics and to identify the molecular cause of FEVR in a cohort of Dutch probands and their family members.

Methods: Twenty families with familial exudative vitreoretinopathy (FEVR) comprising 83 affected and nonaffected individuals were studied. Based on the presence of an avascular zone, the clinical diagnosis was made and biometric data of the posterior pole of 57 patients and family members were obtained by the analysis of fundus photographs and compared with the data of 40 controls.

View Article and Find Full Text PDF

CHARGE syndrome is a multiple congenital anomaly syndrome caused by mutations in the CHD7 gene. Mutations in this gene are found in 60-70% of patients suspected of having CHARGE syndrome. However, if only typical CHARGE patients are taken into account, mutations in the CHD7 gene are found in over 90% of cases.

View Article and Find Full Text PDF

Heterozygous mutations in the LMX1B gene cause nail patella syndrome (NPS) that is associated with nail and skeletal malformations, nephropathy, and glaucoma. Previous phenotype studies of Lmx1b null mice revealed dorsal limb and renal anomalies similar to human NPS, which contributed to the identification of heterozygous mutations in this LIM-homeodomain protein LMX1B as the genetic defect responsible for NPS. Despite advanced insight into the role of the Lmx1b transcription factor in a broad range of animal developmental programs, the pathogenic mechanism underlying dominant inheritance of NPS in man remained unclear.

View Article and Find Full Text PDF

L1 elements are autonomous retrotransposons that can cause hereditary diseases. We have previously identified a full-length L1 insertion in the CHM (choroideremia) gene of a patient with choroideremia, an X-linked progressive eye disease. Because this L1 element, designated L1(CHM), contains two 3'-transductions, we were able to delineate a retrotransposition path in which a precursor L1 on chromosome 10p15 or 18p11 retrotransposed to chromosome 6p21 and subsequently to the CHM gene on chromosome Xq21.

View Article and Find Full Text PDF

Objective: Despite the identification of mutations in the connexin 26 (GJB2) gene as the most common cause of recessive nonsyndromic hearing loss, the pattern of hearing impairment with these mutations remains inconsistent. Recently a deletion encompassing the GJB6 gene was identified and hypothesized to also contribute to hearing loss. We hereby describe the hearing impairment in Dutch patients with biallelic connexin 26 (GJB2) and GJB2+connexin 30 (GJB6) mutations.

View Article and Find Full Text PDF

Congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency is one of the most common autosomal recessive disorders. The aim of this study was to assess the frequencies of CYP21 mutations and to study genotype-phenotype correlation in a large population of Dutch 21-hydroxylase deficient patients. From 198 patients with 21-hydroxylase deficiency, 370 unrelated alleles were studied.

View Article and Find Full Text PDF

Choroideremia (CHM) is a progressive chorioretinal degeneration caused by mutations in the widely expressed CHM gene on chromosome Xq21. The product of this gene, Rab escort protein (REP)-1, is involved in the posttranslational lipid modification and subsequent membrane targeting of Rab proteins, small GTPases that play a key role in intracellular trafficking. We have searched for mutations of the CHM gene in patients with choroideremia by analysis of individual CHM exons and adjacent intronic sequences PCR-amplified from genomic DNA and by reverse transcription (RT)-PCR analysis of the coding region of the CHM mRNA.

View Article and Find Full Text PDF

Congenital adrenal hyperplasia (CAH) is a common autosomal recessive disorder mainly caused by defects in the steroid 21-hydroxylase (CYP21) gene. For reliable and accurate mutation detection in the CYP21 gene it is important to separate the CYP21 gene from the highly homologous CYP21P pseudogene. For this, several different strategies have been developed.

View Article and Find Full Text PDF

Background/objective: Pelizaeus-Merzbacher disease (PMD), an X-linked recessive dysmyelination disorder, is caused by mutations in the proteolipid protein (PLP) gene. However, missense mutations were only found in a fraction of PMD patients, even in families that showed linkage with the PLP locus on Xq22. Here we describe the use of an extended protocol that includes screening for both missense mutations and duplications.

View Article and Find Full Text PDF

We studied a patient with the diagnosis of mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) for mitochondrial DNA mutations in muscle. Established MELAS mutations were excluded. Mitochondrial DNA was further analyzed for mutations in the 22 tRNA genes by single-strand conformation polymorphism (SSCP) analysis; a tRNA(Val) mutation (G1642A) was found.

View Article and Find Full Text PDF

Linkage analysis is described in a family with X-linked mental retardation, ataxia, weakness, floppiness, delayed motor development, absence of deep tendon reflexes, hearing impairment and loss of vision (MIM no. 301835). The disease has a fatal course due to the susceptibility of the patients to infections, especially of the respiratory tract.

View Article and Find Full Text PDF

Yeast vectors suitable for high-level expression of heterologous proteins should combine a high copy number with high mitotic stability. The pMIRY integrative vector system, based upon targeted integration into the yeast rDNA locus, developed in our laboratory satisfies these criteria. However, insertion of a (foreign) gene drastically reduced its mitotic stability of the resulting vector in comparison to its parent.

View Article and Find Full Text PDF

Pelizaeus-Merzbacher disease (PMD) is an X-linked recessive disorder that is characterized by dysmyelination of the central nervous system resulting from mutations in the proteolipid protein (PLP) gene. Mutations causing either overexpression or expression of a truncated form of PLP result in oligodendrocyte cell death because of accumulation of PLP in the endoplasmic reticulum. It has therefore been hypothesized that absence of the protein should result in a less severe phenotype.

View Article and Find Full Text PDF

Microscopically detectable deletions and X;autosome translocations have previously facilitated the construction of a high-resolution interval map of the Xq21 region. Here, we have generated three yeast artificial chromosome contigs spanning approximately 7 megabases of the Xq13.3-q21.

View Article and Find Full Text PDF

In a family with mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes with extremely varying clinical expression, we have identified the A3243G heteroplasmic point mutation in mitochondrial DNA. The degree of severity of the clinical symptoms in the various family members was reflected in the relative quantity of mutated mitochondrial DNA in different tissues. The biochemical activity of complex I of the respiratory chain in muscle was decreased in some members of this family.

View Article and Find Full Text PDF

A family with myoclonus epilepsy has been described previously as suffering from an X-linked disorder, because at least four males were affected, and only mild and variable symptoms were seen in some female carriers. In this family, we have now identified a mitochondrial A-->G (8344) heteroplasmic point mutation. This point mutation has been described in families with maternally inherited myoclonus epilepsy and ragged red fibers.

View Article and Find Full Text PDF