The formation of prostaglandin E2 (PGE2) is associated with adverse inflammatory effects. However, long-term treatment with nonsteroidal anti-inflammatory drugs (NSAIDs) comes with risk of severe side effects. Therefore, alternative ways to inhibit PGE2 are warranted.
View Article and Find Full Text PDFTumors and infectious agents both benefit from an immunosuppressive environment. Cutibacterium acnes () is a bacterium in the normal skin microbiota, which has the ability to survive intracellularly in macrophages and is significantly more common in prostate cancer tissue compared with normal prostate tissue. This study investigated if prostate cancer tissue culture positive for has a higher infiltration of regulatory T-cells (Tregs) and if macrophages stimulated with induced the expression of immunosuppressive genes that could be linked to an increase of Tregs in prostate cancer.
View Article and Find Full Text PDFMalignant tumors, including breast cancers, are frequently infiltrated with innate immune cells and tumor-associated macrophages (TAMs) represent the major inflammatory component in stroma of many tumors. In this study, we examined the immunoreactivity of the macrophage markers CD68 and CD163 as well as the hormone receptors estrogen receptor α (ERα), progesterone receptor (PR), estrogen receptor β1 (ERβ1), human epidermal growth factor receptor 2 (HER-2), matrix metalloproteinase 9 (MMP‑9), urokinase-type plasminogen activator receptor (uPAR) and the proliferations marker Ki67 in 17 breast cancer biopsies. The quantitative score for CD68+ and CD163+ strongly indicate M2 phenotype dominance in the currently investigated biopsies.
View Article and Find Full Text PDFStromal macrophages of different phenotypes can contribute to the expression of proteins that affects metastasis such as urokinase-type plasminogen activator (uPA), its receptor uPAR, and plasminogen activator inhibitor-1 (PAI-1), but knowledge of how essential their contribution is in comparison to the cancer cells in small cell lung cancer (SCLC) and lung squamous cell carcinoma (SCC) is lacking. The expression of uPA, uPAR, and PAI-1 and of the matrix metalloproteinases (MMP)-2 and MMP-9 were studied in human macrophages of M1 and M2 phenotype and compared to a lung SCC (NCI-H520) and a SCLC (NCI-H69) cell line. Effects of treatment with conditioned media (CM) from M1 and M2 macrophages on the expression of these genes in H520 and H69 cells as well as effects on the cell growth were investigated.
View Article and Find Full Text PDFResistance of tumor cells to chemotherapy, such as 5‑fluorouracil (5‑FU), is an obstacle for successful treatment of cancer. As a follow‑up of a previous study we have investigated the effect of conditioned media (CM) from macrophages of M1 or M2 phenotypes on 5‑FU cytotoxicity on the colon cancer cell lines HT‑29 and CACO‑2. HT‑29 cells, but not CACO‑2 cells, having been treated with a combination of M1 CM and 5‑FU recovered their cell growth to a much larger extent compared to cells having been treated with 5‑FU alone when further cultured for 7 days in fresh media.
View Article and Find Full Text PDFSolid tumors are infiltrated by stroma cells including macrophages and these cells can affect tumor growth, metastasis and angiogenesis. We have investigated the effects of conditioned media (CM) from different macrophages on the proliferation of the colon cancer cell lines HT-29 and CACO-2. CM from THP-1 macrophages and monocyte-derived human macrophages of the M1 phenotype, but not the M2 phenotype, inhibited proliferation of the tumor cells in a dose-dependent manner.
View Article and Find Full Text PDFEllagic acid, a natural polyphenol found in certain fruits, nuts and vegetables, has in recent years been the subject of intense research within the fields of cancer and inflammation. Pain, fever and swelling, all typical symptoms of inflammation, are ascribed to elevated levels of PGE2. In the present study, we have investigated the effects of ellagic acid on PGE2 release and on prostaglandin-synthesising enzymes in human monocytes.
View Article and Find Full Text PDFStimulation of mouse peritoneal macrophages with zymosan or bacteria results in activation of 85-kDa cytosolic phospholipase A(2) (cPLA(2)) and release of arachidonate. We have investigated the role of phosphatidylinositol 3-kinase (PtdIns 3-kinase) in the signalling leading to activation of cPLA(2) and release of arachidonate in response to zymosan and the bacterium Prevotella intermedia. The specific PtdIns 3-kinase inhibitor wortmannin completely inhibited zymosan- and bacteria-induced release of arachidonate with an IC(50) value of 10-20 nM.
View Article and Find Full Text PDFVanadate and peroxovanadate (pV), potent inhibitors of tyrosine phosphatases, mimic several of the metabolic actions of insulin. Here we compare the mechanisms for the anti-lipolytic action of insulin, vanadate and pV in rat adipocytes. Vanadate (5 mM) and pV (0.
View Article and Find Full Text PDFBiochem Biophys Res Commun
May 1998
Protein kinase B (PKB) has previously been shown to be activated in response to insulin and growth factor stimulation. The activation mechanism has been suggested to involve translocation of PKB to membranes, where it is phosphorylated and activated. Insulin-induced translocation of PKB has not been demonstrated in a physiological target cell.
View Article and Find Full Text PDFPhosphodiesterases (PDEs) include a large group of structurally related enzymes that belong to at least seven related gene families (PDEs 1-7) that differ in their primary structure, affinity for cAMP and cGMP, response to specific effectors, sensitivity to specific inhibitors, and regulatory mechanism. One characteristic of PDE3s involves their phosphorylation and activation in response to insulin as well as to agents that increase cAMP in adipocytes, hepatocytes, and platelets and in response to insulin-like growth factor 1 in pancreatic beta cells. In adipocytes, activation of the membrane-associated PDE3B is the major mechanism whereby insulin antagonizes catecholamine-induced lipolysis.
View Article and Find Full Text PDFInsulin stimulation of adipocytes results in serine phosphorylation/activation of phosphodiesterase 3B (PDE 3B) and activation of a kinase that phosphorylates PDE 3B in vitro, key events in the antilipolytic action of this hormone. We have investigated the role for p70 S6 kinase, mitogen-activated protein kinases (MAP kinases), and protein kinase B (PKB) in the insulin signaling pathway leading to phosphorylation/activation of PDE 3B in adipocytes. Insulin stimulation of adipocytes resulted in increased activity of p70 S6 kinase, which was completely blocked by pretreatment with rapamycin.
View Article and Find Full Text PDFProtein kinase B (PKB) (also referred to as RAC/Akt kinase) has been shown to be controlled by various growth factors, including insulin, using cell lines and transfected cells. However, information is so far scarce regarding its regulation in primary insulin-responsive cells. We have therefore used isolated rat adipocytes to examine the mechanisms, including membrane translocation, whereby insulin and the insulin-mimicking agents vanadate and peroxovanadate control PKB.
View Article and Find Full Text PDFExposure of mouse macrophages to either phorbol ester or certain bacteria was previously shown to cause increased phosphorylation of the cytosolic 85 kDa phospholipase A2 as well as a stable increase in its catalytic activity. We have now attempted to map the major phosphorylation sites on the enzyme in such cells. Phosphorylation occurred on serine residues without a detectable increase in either phosphothreonine or phosphotyrosine.
View Article and Find Full Text PDFThe newly defined eicosatetraenoates (ETEs), 5-oxoETE and 5-oxo-15(OH)-ETE, share structural motifs, synthetic origins, and bioactions with leukotriene B4 (LTB4). All three eicosanoids stimulate Ca2+ transients and chemotaxis in human neutrophils (PMN). However, unlike LTB4, 5-oxoETE and 5-oxo-15(OH)-ETE alone cause little degranulation and no superoxide anion production.
View Article and Find Full Text PDF5-Oxo-eicosatetraenoate (5-oxoETE) is gaining recognition as a chemotactic factor for eosinophilic (Eo) as well as neutrophilic (Neu) polymorphonuclear leukocytes. We found that the eicosanoid was far stronger than C5a, platelet-activating factor (PAF), leukotriene B4 (LTB4), or FMLP in stimulating Eo chemotaxis. Moreover, it had weak intrinsic degranulating effects on otherwise unstimulated Eo, produced prominent degranulation responses in Eo primed by granulocyte-macrophage CSF, and enhanced the Eo-degranulating potencies of PAF, C5a, LTB4, and FMLP by up to 10,000-fold.
View Article and Find Full Text PDFAddition of submicromolar concentrations of arachidonic acid (AA) to human neutrophils induced a 2-fold increase in the activity of a cytosolic phospholipase A2 (PLA2) when measured using sonicated vesicles of 1-stearoyl-2-[14C]arachidonoylphosphatidylcholine as substrate. A similar increase in cytosolic PLA2 activity was induced by stimulation of neutrophils with leukotriene B4 (LTB4), 5-oxoeicosatetraenoic acid, or 5-hydroxyeicosatetraenoic acid (5-HETE). LTB4 was the most potent of the agonists, showing maximal effect at 1 nM.
View Article and Find Full Text PDFThe selectivity of the intracellular 85 kDa phospholipase A2 (PLA2-85) towards fatty acids closely related to arachidonic acid has been investigated, using purified PLA2-85 from J774 cells and mixed phospholipids, dually acyl-chain-labelled in the sn-2 position. In parallel experiments, we assessed the acyl-chain selectivity of the release process in intact, dually labelled, peritoneal mouse macrophages responding to either calcium ionophore or zymosan beads in the presence of indomethacin and BSA. The results obtained in the two systems were very similar, which supports previous evidence that PLA2-85 is responsible for stimulus-induced release of eicosanoid precursor in mouse macrophages.
View Article and Find Full Text PDFStimulation of 32P-labeled macrophages with phorbol ester caused an increase in phosphorylation of the intracellular, high molecular weight phospholipase A2. This increase in phosphorylation was accompanied by an increase in enzyme activity, but led to no detectable shift in the concentration dependence for Ca(2+)-induced activation. The phosphorylated phospholipase A2 could be dephosphorylated by treatment with acid phosphatase, and such treatment also reduced its catalytic activity.
View Article and Find Full Text PDFBiochem Biophys Res Commun
April 1992
A recently purified Ca(2+)-dependent intracellular phospholipase A2 from spleen, kidney and macrophage cell lines is activated by Ca2+ at concentrations achieved intracellularly. Using enzyme from the murine cell line J774 we here demonstrate the formation of a ternary complex of phospholipase, 45Ca2+ and phospholipid vesicle, and provide evidence for a single Ca(2+)-binding site on the enzyme involved in its vesicle binding. Although Ca2+ binds to and functions as an activator of the enzyme, this ion does not appear to be involved in its catalytic mechanism, since enzyme brought to the phospholipid vesicle by molar concentrations of NaCl or NH4+ salts exhibited Ca(2+)-independent catalytic activity.
View Article and Find Full Text PDFA phospholipase A2 hydrolyzing arachidonic-acid-containing phospholipids has been purified 5600-fold from mouse spleen and to near homogeneity from the macrophage cell line J774. A molecular mass of 100 kDa for the enzyme was estimated by SDS/PAGE, while it migrated as a 70-kDa protein upon gel chromatography. The enzyme from both sources showed the same characteristics as that previously identified in murine peritoneal macrophages [Wijkander, J.
View Article and Find Full Text PDFA glycerol triether, 1,2-isopropylidene 3-0-decanyl-sn-glycerol, was found to induce mobilization of arachidonic acid from ethanolamine phosphoglycerides and phosphatidylinositol in mouse peritoneal macrophages. This effect showed structural specificity, occurred without activation of protein kinase C and resulted in formation and release of predominantly 12-hydroxy-eicosatetraenoic acid. Activators of kinase C (4-beta-phorbol 12-myristate 13-acetate and 1,2-dioctanoyl-sn-glycerol) instead specifically enhance prostaglandin E2 formation.
View Article and Find Full Text PDFA calcium-dependent phospholipase A2 with half-maximal activity at approx. 0.7 microM free Ca2+ has been identified in the cytosolic fraction from macrophages.
View Article and Find Full Text PDFBiochim Biophys Acta
January 1989
Mouse peritoneal macrophages respond to activators of protein kinase C and to zymosan particles and calcium ionophore by rapid enhancement of a phospholipase A pathway and mobilization of arachidonic acid. The pattern of protein phosphorylation induced in these cells by 4 beta-phorbol 12-myristate 13-acetate (PMA), 1,2-dioctanoyl-sn-glycerol, exogenous phospholipase C and by zymosan and ionophore A23187 was found to be virtually identical. The time course of phosphorylation differed among the phosphoprotein bands and in only some of those identified (i.
View Article and Find Full Text PDF