To facilitate our understanding of proteome dynamics during signaling events, robust workflows affording fast time resolution without confounding factors are essential. We present Surface-exposed protein Labeling using PeroxidaSe, HO, and Tyramide-derivative (SLAPSHOT) to label extracellularly exposed proteins in a rapid, specific, and sensitive manner. Simple and flexible SLAPSHOT utilizes recombinant soluble APEX2 protein applied to cells, thus circumventing the engineering of tools and cells, biological perturbations, and labeling biases.
View Article and Find Full Text PDFObjectives: Mosaic gain of chromosome 1q (chr1q) has been associated with malformation of cortical development (MCD) and epilepsy. Hyaline protoplasmic astrocytopathy (HPA) is a rare neuropathologic finding seen in cases of epilepsy with MCD. The cell-type specificity of mosaic chr1q gain in the brain and the molecular signatures of HPA are unknown.
View Article and Find Full Text PDFDespite advancements in cancer immunotherapy, solid tumors remain formidable challenges. In glioma, profound inter- and intra-tumoral heterogeneity of antigen landscape hampers therapeutic development. Therefore, it is critical to consider alternative sources to expand the repertoire of targetable (neo-)antigens and improve therapeutic outcomes.
View Article and Find Full Text PDFBackground Aims: Chimeric antigen receptor T (CAR-T) cells are a remarkably efficacious, highly promising and rapidly evolving strategy in the field of immuno-oncology. The precision of these targeted cellular therapies is driven by the specificity of the antigen recognition element (the "binder") encoded in the CAR. This binder redirects these immune effector cells precisely toward a defined antigen on the surface of cancer cells, leading to T-cell receptor-independent tumor lysis.
View Article and Find Full Text PDFDespite the success of BCMA-targeting CAR-Ts in multiple myeloma, patients with high-risk cytogenetic features still relapse most quickly and are in urgent need of additional therapeutic options. Here, we identify CD70, widely recognized as a favorable immunotherapy target in other cancers, as a specifically upregulated cell surface antigen in high risk myeloma tumors. We use a structure-guided design to define a CD27-based anti-CD70 CAR-T design that outperforms all tested scFv-based CARs, leading to >80-fold improved CAR-T expansion in vivo.
View Article and Find Full Text PDFThalamic dysfunction has been implicated in multiple psychiatric disorders. We sought to study the mechanisms by which abnormalities emerge in the context of the 22q11.2 microdeletion, which confers significant genetic risk for psychiatric disorders.
View Article and Find Full Text PDFPurpose: Multiple myeloma is a plasma cell malignancy with an unmet clinical need for improved imaging methods and therapeutics. Recently, we identified CD46 as an overexpressed therapeutic target in multiple myeloma and developed the antibody YS5, which targets a cancer-specific epitope on this protein. We further developed the CD46-targeting PET probe [89Zr]Zr-DFO-YS5 for imaging and [225Ac]Ac-DOTA-YS5 for radiopharmaceutical therapy of prostate cancer.
View Article and Find Full Text PDFBackground: Approximately 50% of patients who receive anti-CD19 CAR-T cells relapse, and new immunotherapeutic targets are urgently needed. We recently described CD72 as a promising target in B-cell malignancies and developed nanobody-based CAR-T cells (nanoCARs) against it. This cellular therapy design is understudied compared with scFv-based CAR-T cells, but has recently become of significant interest given the first regulatory approval of a nanoCAR in multiple myeloma.
View Article and Find Full Text PDFBackground: Despite advancements in cancer immunotherapy, solid tumors remain formidable challenges. In glioma, profound inter-and intra-tumoral heterogeneity of antigen landscape hampers therapeutic development. Therefore, it is critical to consider alternative sources to expand the repertoire of targetable (neo-)antigens and improve therapeutic outcomes.
View Article and Find Full Text PDFT-cell-mediated immunotherapies are limited by the extent to which cancer-specific antigens are homogenously expressed throughout a tumor. We reasoned that recurrent splicing aberrations in cancer represent a potential source of tumor-wide and public neoantigens, and to test this possibility, we developed a novel pipeline for identifying neojunctions expressed uniformly within a tumor across diverse cancer types. Our analyses revealed multiple neojunctions that recur across patients and either exhibited intratumor heterogeneity or, in some cases, were tumor-wide.
View Article and Find Full Text PDFCoincident transcription and DNA replication causes replication stress and genome instability. Rapidly dividing mouse pluripotent stem cells are highly transcriptionally active and experience elevated replication stress, yet paradoxically maintain genome integrity. Here, we study FOXD3, a transcriptional repressor enriched in pluripotent stem cells, and show that its repression of transcription upon S phase entry is critical to minimizing replication stress and preserving genome integrity.
View Article and Find Full Text PDFTrends Pharmacol Sci
August 2023
Proteasome inhibitors (PIs) are a fascinating class of small molecules that disrupt protein homeostasis and are highly efficacious in the blood cancer multiple myeloma. However, PIs are not curative, and overcoming PI resistance to extend patient survival remains a major unmet need. Recent strategies to overcome PI resistance, including inhibiting alternative protein homeostasis pathways and targeting the mitochondrion as a nexus of metabolic adaptation to PIs, are gaining momentum.
View Article and Find Full Text PDF22q11.2 deletion syndrome, associated with congenital and neuropsychiatric anomalies, is the most common copy number variant (CNV)-associated syndrome. Patient-derived, induced pluripotent stem cell (iPS) models have provided insight into this condition.
View Article and Find Full Text PDFOver the past decade, mass spectrometry-based proteomics has enabled an in-depth characterization of biological systems across a broad array of applications. The cell surface proteome ("surfaceome") in human disease is of significant interest, as plasma membrane proteins are the primary target of most clinically approved therapeutics, as well as a key feature by which to diagnostically distinguish diseased cells from healthy tissues. However, focused characterization of membrane and surface proteins of the cell has remained challenging, primarily due to the complexity of cellular lysates, which mask proteins of interest by other high-abundance proteins.
View Article and Find Full Text PDFTo facilitate our understanding of the often rapid and nuanced dynamics of extracellularly exposed proteomes during signaling events, it is important to devise robust workflows affording fast time resolution without biases and confounding factors. Here, we present urface-exposed protein beling using eroxidae, , and yramide-derivative (SLAPSHOT), to label extracellularly exposed proteins in a rapid, sensitive, and specific manner, while preserving cellular integrity. This experimentally simple and flexible method utilizes recombinant soluble APEX2 peroxidase that is applied to cells, thus circumventing biological perturbations, tedious engineering of tools and cells, and labeling biases.
View Article and Find Full Text PDFThe CD38-targeting monoclonal antibodies (CD38 mAbs) are well-established therapies in multiple myeloma (MM), but responses to treatment are not always deep or durable. Natural killer (NK) cells deficient in Fc epsilon receptor gamma subunits, known as g-NK cells, are found in higher numbers among individuals exposed to cytomegalovirus (CMV) and are able to potentiate the efficacy of daratumumab in vivo. Here, we present a single-centre, retrospective analysis of 136 patients with MM with known CMV serostatus who received a regimen containing a CD38 mAb (93.
View Article and Find Full Text PDFTRAPPC9 loss-of-function biallelic variants are associated with an autosomal recessive intellectual disability syndrome (Online Mendelian Inheritance of Man no. 613192), also characterized by microcephaly, hypertelorism, obesity, growth delay, and behavioral differences. Here, we describe an 8-year-old Hispanic female with neurodevelopmental disorder, partial epilepsy, microcephaly, bilateral cleft lip and alveolus, growth delay, and dysmorphic features.
View Article and Find Full Text PDFThe cell surface proteome ("surfaceome") serves as the interface between diseased cells and their local microenvironment. In cancer, this compartment is critical not only for defining tumor biology but also serves as a rich source of potential therapeutic targets and diagnostic markers. Recently, we profiled the surfaceome of the blood cancer multiple myeloma, an incurable plasma cell malignancy.
View Article and Find Full Text PDFThe connections between metabolic state and therapy resistance in multiple myeloma (MM) are poorly understood. We previously reported that electron transport chain (ETC) suppression promotes sensitivity to the BCL-2 antagonist venetoclax. Here, we show that ETC suppression promotes resistance to proteasome inhibitors (PIs).
View Article and Find Full Text PDFPatient-derived organoids and cellular spheroids recapitulate tissue physiology with remarkable fidelity. We investigated how engagement with a reconstituted basement membrane in three dimensions (3D) supports the polarized, stress resilient tissue phenotype of mammary epithelial spheroids. Cells interacting with reconstituted basement membrane in 3D had reduced levels of total and actin-associated filamin and decreased cortical actin tension that increased plasma membrane protrusions to promote negative plasma membrane curvature and plasma membrane protein associations linked to protein secretion.
View Article and Find Full Text PDFThe myeloma surface proteome (surfaceome) determines tumor interaction with the microenvironment and serves as an emerging arena for therapeutic development. Here, we use glycoprotein capture proteomics to define the myeloma surfaceome at baseline, in drug resistance, and in response to acute drug treatment. We provide a scoring system for surface antigens and identify CCR10 as a promising target in this disease expressed widely on malignant plasma cells.
View Article and Find Full Text PDFThe endolysosome system plays central roles in both autophagic degradation and secretory pathways, including the release of extracellular vesicles and particles (EVPs). Although previous work reveals important interconnections between autophagy and EVP-mediated secretion, our understanding of these secretory events during endolysosome inhibition remains incomplete. Here, we delineate a secretory autophagy pathway upregulated in response to endolysosomal inhibition, which mediates EVP-associated release of autophagic cargo receptors, including p62/SQSTM1.
View Article and Find Full Text PDFThere is great interest in understanding the cellular mechanisms controlling autophagy, a tightly regulated catabolic and stress-response pathway. Prior work has uncovered links between autophagy and the Golgi reassembly stacking protein of 55 kDa (GRASP55), but their precise interrelationship remains unclear. Intriguingly, both autophagy and GRASP55 have been functionally and spatially linked to the endoplasmic reticulum (ER)---Golgi interface, broaching this compartment as a site where GRASP55 and autophagy may intersect.
View Article and Find Full Text PDF