Publications by authors named "Wight P"

Recently, the myelin proteolipid protein gene () was shown to be expressed in the glia of the enteric nervous system (ENS) in mouse. However, beyond this, not much is known about its expression in the intestine. To address this matter, we investigated expression at the mRNA and protein levels in the intestine of mice at different ages (postnatal days 2, 9, 21, and 88).

View Article and Find Full Text PDF

Much of what is known about the mechanisms that control the developmental expression of the myelin proteolipid protein gene () has been attained through use of transgenic animal models. In this study, we analyzed expression of related transgenes which utilize genomic DNA from either human or mouse to drive expression of a reporter. Human () sequence span either the proximal 6.

View Article and Find Full Text PDF

Fetal alcohol spectrum disorders (FASD) are alarmingly common and result in significant personal and societal loss. Neuropathology of the hippocampus is common in FASD leading to aberrant cognitive function. In the current study, we evaluated the effects of ethanol on the expression of a targeted set of molecules involved in neuroinflammation, myelination, neurotransmission, and neuron function in the developing hippocampus in a postnatal model of FASD.

View Article and Find Full Text PDF
Article Synopsis
  • - The PLP1 gene is crucial for producing the main protein in the brain's myelin, and its expression is tightly controlled due to its link to neurological disorders when imbalanced.
  • - A recent study explored how certain regions in the PLP1 gene affect its expression in transgenic mice, specifically focusing on the wmN1 and ASE regions found in intron 1.
  • - Findings revealed that the wmN1 region is essential for gene expression in various cell types, while removing the ASE region did not impact expression, suggesting compensatory factors might be at play.
View Article and Find Full Text PDF

Xq22 deletions that encompass PLP1 (Xq22-PLP1-DEL) are notable for variable expressivity of neurological disease traits in females ranging from a mild late-onset form of spastic paraplegia type 2 (MIM# 312920), sometimes associated with skewed X-inactivation, to an early-onset neurological disease trait (EONDT) of severe developmental delay, intellectual disability, and behavioral abnormalities. Size and gene content of Xq22-PLP1-DEL vary and were proposed as potential molecular etiologies underlying variable expressivity in carrier females where two smallest regions of overlap (SROs) were suggested to influence disease. We ascertained a cohort of eight unrelated patients harboring Xq22-PLP1-DEL and performed high-density array comparative genomic hybridization and breakpoint-junction sequencing.

View Article and Find Full Text PDF

The α Na,K-ATPase (αNKA) is one of four known α isoforms of the mammalian transporter. A deficiency in αNKA is linked to severe movement control disorders. Understanding the pathogenesis of these disorders is limited by an incomplete knowledge of αNKA expression in the brain as well as the challenges associated with identifying living cells that express the isoform for subsequent electrophysiological studies.

View Article and Find Full Text PDF

The myelin proteolipid protein gene (PLP1) encodes the most abundant protein present in myelin from the central nervous system (CNS). Its expression must be tightly controlled as evidenced by mutations that alter PLP1 dosage; both overexpression (elevated PLP1 copy number) and lack thereof (PLP1 deletion) result in X-linked genetic disorders in man. However, not much is known about the mechanisms that govern expression of the human gene.

View Article and Find Full Text PDF

Alterations in the myelin proteolipid protein gene ( PLP1) may result in rare X-linked disorders in humans such as Pelizaeus-Merzbacher disease and spastic paraplegia type 2. PLP1 expression must be tightly regulated since null mutations, as well as elevated PLP1 copy number, both lead to disease. Previous studies with Plp1-lacZ transgenic mice have demonstrated that mouse Plp1 ( mPlp1) intron 1 DNA (which accounts for slightly more than half of the gene) is required for the mPlp1 promoter to drive significant levels of reporter gene expression in brain.

View Article and Find Full Text PDF

Although the myelin proteolipid protein gene (PLP1) encodes the most abundant protein in central nervous system (CNS) myelin, not much is known about the mechanisms that govern expression of the human gene (hPLP1). Much more is known about the processes that regulate Plp1 gene expression in rodents. From studies with Plp1-lacZ transgenic mice, it was determined that the first intron of mouse Plp1 (mPlp1) is required to attain high levels of expression in brain, concurrent with the active myelination period.

View Article and Find Full Text PDF

The small intestine participates in lipid digestion, metabolism and transport. Cytosolic malic enzyme 1 (ME1) is an enzyme that generates NADPH used in fatty acid and cholesterol biosynthesis. Previous work has correlated liver and adipose ME1 expression with susceptibility to obesity and diabetes; however, the contributions of intestine-expressed ME1 to these conditions are unknown.

View Article and Find Full Text PDF

Myelin proteolipid protein gene (Plp1) expression is temporally regulated in brain, which peaks during the active myelination period of CNS development. Previous studies with Plp1-lacZ transgenic mice demonstrated that (mouse) Plp1 intron 1 DNA is required for high levels of expression in oligodendrocytes. Deletion-transfection analysis revealed the intron contains a single positive regulatory element operative in the N20.

View Article and Find Full Text PDF

YY1 (Yin and Yang 1) is a multifunctional, ubiquitously expressed, zinc finger protein that can act as a transcriptional activator, repressor, or initiator element binding protein. Previous studies have shown that YY1 modulates the activity of reporter genes driven by the myelin PLP (proteolipid protein) (PLP1/Plp1) promoter. However, it is known that Plp1 intron 1 DNA contains regulatory elements that are required for the dramatic increase in gene activity, coincident with the active myelination period of CNS (central nervous system) development.

View Article and Find Full Text PDF

The use of immortalized cells has been instrumental as a tool with which to study gene regulation. However, it is crucial to understand the status of a given cell line, especially when investigating the regulation of genes whose expression is developmentally regulated. Several immortalized cell lines have been derived from primary cultures of mouse oligodendrocytes.

View Article and Find Full Text PDF

Although the myelin proteolipid protein gene (Plp1) is highly expressed in the central nervous system encoding the most abundant myelin protein in oligodendrocytes, it is also expressed in other tissues, including testis. Transgenic studies with mice that harbor Plp1-lacZ fusion genes suggest that Leydig cells are the source of Plp1 gene expression in testis. However, virtually nothing is known about Plp1 gene regulation in Leydig cells, which is the focus of this study.

View Article and Find Full Text PDF

The myelin proteolipid protein gene (Plp1) encodes the most abundant protein found in CNS myelin, accounting for nearly one-half of the total protein. Its expression in oligodendrocytes is developmentally regulated - peaking during the active myelination period of CNS development. Previously, we have identified a novel enhancer (designated ASE) in intron 1 DNA that appears to be important in mediating the surge of Plp1 gene activity during the active myelination period.

View Article and Find Full Text PDF

Jimpy (Plp(jp)) is an X-linked recessive mutation in mice that causes CNS dysmyelination and early death in affected males. It results from a point mutation in the acceptor splice site of myelin proteolipid protein (Plp) exon 5, producing transcripts that are missing exon 5, with a concomitant shift in the downstream reading frame. Expression of the mutant PLP product in Plp(jp) males leads to hypomyelination and oligodendrocyte death.

View Article and Find Full Text PDF

Simple azo-dyes carrying phosphonic acid and arsonic acid substituents such as 4-(4-hydroxyphenyl azo)phenylphosphonic acid (5) and 4-(4-hydroxyphenylazo)phenylarsonic acid (6) bind more strongly to high surface area oxides such as aluminium trihydroxide and goethite than their carboxylic and sulfonic acid analogues and the phosphonate-functionalized dyes have been shown to have greater humidity fastness when printed onto commercial alumina-coated papers. Adsorption isotherm measurements provide evidence for the formation of ternary dye/cyclodextrin/surface complexes. Dyes which form such ternary complexes show higher light fastness when printed onto alumina coated papers in an ink formulation containing alpha-cyclodextrin.

View Article and Find Full Text PDF

The myelin proteolipid protein (Plp) gene is expressed in oligodendrocytes and encodes the most abundant protein (approximately 50%) present in mature myelin from the central nervous system (CNS). Plp gene activity is low to nonexistent early in development but sharply increases, concurrently with the active myelination period of CNS development. Work from our laboratory suggests that the temporal regulation of Plp gene expression in mice is mediated by a positive regulatory element located within Plp intron 1 DNA.

View Article and Find Full Text PDF

The myelin proteolipid protein (Plp) gene is expressed in oligodendrocytes and encodes the most abundant protein found in mature CNS myelin. Expression of the gene is dynamic and peaks during the active myelination period of CNS development. The surge in Plp gene activity during this period has been purported to be mediated by a positive regulatory region located within the first intron.

View Article and Find Full Text PDF

The myelin proteolipid protein (PLP) gene ( Plp) encodes the most abundant protein found in myelin from the central nervous system (CNS). Expression of the gene is regulated in a spatiotemporal manner with maximal levels of expression occurring in oligodendrocytes during the active myelination period of CNS development, although other cell types in the CNS as well as in the periphery can express the gene to a much lower degree. In oligodendrocytes, Plp gene expression is tightly regulated.

View Article and Find Full Text PDF

Phosphonate-functionalised dyes have been shown to bind strongly to aluminium oxides and to form stable 1:1 complexes with cyclodextrins at the surface.

View Article and Find Full Text PDF

The myelin proteolipid protein (Plp) gene encodes the most abundant protein found in mature CNS myelin. Expression of the gene is regulated spatiotemporally, with maximal expression occurring in oligodendrocytes during the myelination period of CNS development. Plp gene expression is tightly controlled.

View Article and Find Full Text PDF

The myelin proteolipid protein gene (Plp ) is expressed primarily in oligodendrocytes. Yet how the gene remains repressed in nonexpressing cells has not been defined, and potentially could cause adverse effects in an organism if the mechanism for repression was impaired. Previous studies suggest that the first intron contains element(s), which suppress expression in nonexpressing cells, although the identity of these elements within the 8 kb intron was not characterized.

View Article and Find Full Text PDF

Regulation of myelin proteolipid protein (PLP:) gene expression is tightly controlled, both spatially and temporally. Previously, we have shown with transgenic mice that a PLP:-lacZ fusion gene (which includes the entire sequence for PLP: intron 1 DNA) is regulated in a similar manner to endogenous PLP: gene expression. Furthermore, by deletion-transfection analyses using assorted PLP:-lacZ constructs with partial deletion of PLP: intron 1 sequences, we have shown that the first intron possesses an antisilencer region that is capable of over-coming repression mediated by two distinct regions located elsewhere within intron 1 DNA.

View Article and Find Full Text PDF

Antisilencer or antirepressor elements have been described, thus far, for only a few eukaryotic genes and were identified by their ability not to augment gene expression per se but to override repression mediated via negative transcription regulatory elements. Here we report the first case of antisilencing for a neural-specific gene, the myelin proteolipid protein (PLP) gene (Plp). PLP is the most abundant protein found in CNS myelin.

View Article and Find Full Text PDF