In recent years it has been increasingly recognized that biochemical signals are not necessarily constant in time and that the temporal dynamics of a signal can be the information carrier. Moreover, it is now well established that the protein signaling network of living cells has a bow-tie structure and that components are often shared between different signaling pathways. Here we show by mathematical modeling that living cells can multiplex a constant and an oscillatory signal: they can transmit these two signals simultaneously through a common signaling pathway, and yet respond to them specifically and reliably.
View Article and Find Full Text PDFBiological systems often have to measure extremely low concentrations of chemicals with high precision. When dealing with such small numbers of molecules, the inevitable randomness of physical transport processes and binding reactions will limit the precision with which measurements can be made. An important question is what the lower bound on the noise would be in such measurements.
View Article and Find Full Text PDFInformation processing and decision-making is based upon logic operations, which in cellular networks has been well characterized at the level of transcription. In recent years, however, both experimentalists and theorists have begun to appreciate that cellular decision-making can also be performed at the level of a single protein, giving rise to the notion of protein logic. Here we systematically explore protein logic using a well-known statistical mechanical model.
View Article and Find Full Text PDFIn biochemical signaling, information is often encoded in oscillatory signals. However, the advantages of such a coding strategy over an amplitude-encoding scheme of constant signals remain unclear. Here we study the dynamics of a simple model gene promoter in response to oscillating and constant transcription factor signals.
View Article and Find Full Text PDFIn this Letter we show that living cells can multiplex biochemical signals, i.e., transmit multiple signals through the same signaling pathway simultaneously, and yet respond to them very specifically.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
September 2010
Living cells are continually exposed to environmental signals that vary in time. These signals are detected and processed by biochemical networks, which are often highly stochastic. To understand how cells cope with a fluctuating environment, we therefore have to understand how reliably biochemical networks can transmit time-varying signals.
View Article and Find Full Text PDF