Publications by authors named "Wiessler M"

Small synthetic fluorophores are in many ways superior to fluorescent proteins as labels for imaging. A major challenge is to use them for a protein-specific labeling in living cells. Here, we report on our use of noncanonical amino acids that are genetically encoded via the pyrrolysyl-tRNA/pyrrolysyl-RNA synthetase pair at artificially introduced TAG codons in a recoded E.

View Article and Find Full Text PDF

Solid phase peptide synthesis (SPPS) is the method of choice to produce peptides. Several protecting groups enable specific modifications. However, complex peptide conjugates usually require a rather demanding conjugation strategy, which is mostly performed in solution.

View Article and Find Full Text PDF

Promotion of cell adhesion on biomaterials is crucial for the long-term success of a titanium implant. Herein a novel concept is highlighted combining very stable and affine titanium surface adhesive properties with specific cell binding moieties in one molecule. A peptide containing L-3,4-dihydroxyphenylalanine was synthesized and affinity to titanium was investigated.

View Article and Find Full Text PDF

Personalized anti-cancer medicine is boosted by the recent development of molecular diagnostics and molecularly targeted drugs requiring rapid and efficient ligation routes. Here, we present a novel approach to synthetize a conjugate able to act simultaneously as an imaging and as a chemotherapeutic agent by coupling functional peptides employing solid phase peptide synthesis technologies. Development and the first synthesis of a fluorescent dye with similarity in the polymethine part of the Cy7 molecule whose indolenine-N residues were substituted with a propylene linker are described.

View Article and Find Full Text PDF

Correction for 'Combination of inverse electron-demand Diels-Alder reaction with highly efficient oxime ligation expands the toolbox of site-selective peptide conjugations' by S. Hörner, et al., Chem.

View Article and Find Full Text PDF

A modular approach combining inverse electron-demand Diels-Alder coupling (DARinv) and oxime ligation expands the toolbox of bioorthogonal peptide chemistry. Applicability of versatile site-specific bifunctional building blocks is demonstrated by generation of defined conjugates comprising linear, cystine-bridged and multi-disulfide functional peptides as well as their conjugation with hybrid silsesquioxane nanoparticles.

View Article and Find Full Text PDF

Advances in imaging diagnostics using magnetic resonance tomography (MRT), positron emission tomography (PET) and fluorescence imaging including near infrared (NIR) imaging methods are facilitated by constant improvement of the concepts of peptide synthesis. Feasible patient-specific theranostic platforms in the personalized medicine are particularly dependent on efficient and clinically applicable peptide constructs. The role of peptides in the interrelations between the structure and function of proteins is widely investigated, especially by using computer-assisted methods.

View Article and Find Full Text PDF

The highly organized DNA architecture inside of the nuclei of cells is accepted in the scientific world. In the human genome about 3 billion nucleotides are organized as chromatin in the cell nucleus. In general, they are involved in gene regulation and transcription by histone modification.

View Article and Find Full Text PDF

The personalized medicine, also documented as "individualized medicine", is an effective and therapeutic approach. It is designed to treat the disease of the individual patient whose precise differential gene expression profile is well known. The trend in the biomedical and biophysical research shows important consequences for the pharmaceutical drug and diagnostics research.

View Article and Find Full Text PDF

Oligosaccharides aberrantly expressed on tumor cells influence processes such as cell adhesion and modulation of the cell's microenvironment resulting in an increased malignancy. Schmidt's imidate strategy offers an effective method to synthesize libraries of various oligosaccharide mimetics. With the aim to perturb interactions of tumor cells with extracellular matrix proteins and host cells, molecules with 3,4-bis(hydroxymethyl)furan as core structure were synthesized and screened in biological assays for their abilities to interfere in cell adhesion and other steps of the metastatic cascade, such as tumor-induced angiogenesis.

View Article and Find Full Text PDF

Multifunctionality is gaining more and more importance in the field of improved biomaterials. Especially peptides feature a broad chemical variability and are versatile mediators between inorganic surfaces and living cells. Here, we synthesized a unique peptide that binds to SiO(2) with nM affinity.

View Article and Find Full Text PDF

Visualizing biomolecules by fluorescent tagging is a powerful method for studying their behaviour and function inside cells. We prepared and genetically encoded an unnatural amino acid (UAA) that features a bicyclononyne moiety. This UAA offered exceptional reactivity in strain-promoted azide-alkyne cycloadditions.

View Article and Find Full Text PDF

With the increase in molecular diagnostics and patient-specific therapeutic approaches, the delivery and targeting of imaging molecules and pharmacologically active agents gain increasing importance. The ideal delivery system does not exist yet. The realization of two features is indispensable: first, a locally high concentration of target-specific diagnostic and therapeutic molecules; second, the broad development of effective and safe carrier systems.

View Article and Find Full Text PDF

Bioorthogonal reactions are of high interest in biosciences as they allow the introduction of fluorescent dyes, affinity tags, or other unnatural moieties into biomolecules. The site-specific attachment of two or more different labels is particularly demanding and typically requires laborious multistep syntheses. Here, we report that the most popular cycloaddition in bioconjugation, the copper-catalyzed azide-alkyne click reaction (CuAAC), is fully orthogonal to the inverse electron-demand Diels-Alder reaction (DAinv).

View Article and Find Full Text PDF

Carbohydrate microarrays are an emerging tool for the high-throughput screening of carbohydrate-protein interactions that represent the basis of many biologically and medicinally relevant processes. The crucial step in the preparation of carbohydrate arrays is the attachment of carbohydrate probes to the surface. We examined the Diels-Alder reaction with inverse-electron-demand (DARinv) as an irreversible, chemoselective ligation reaction for that purpose.

View Article and Find Full Text PDF

Red fluorescent proteins can generate reactive oxygen species (ROS) if their fluorochrome is stimulated e.g. by visible light illumination.

View Article and Find Full Text PDF

Innovative and personalized therapeutic approaches result from the identification and control of individual aberrantly expressed genes at the transcriptional and post-transcriptional level. Therefore, it is of high interest to establish diagnostic, therapeutic and theranostic strategies at these levels. In the present study, we used the Diels-Alder Reaction with inverse electron demand (DAR(inv)) click chemistry to prepare a series of cyclic RGD-BioShuttle constructs.

View Article and Find Full Text PDF

Progress in genomics and proteomics attended to the door for better understanding the recent rapid expanding complex research field of metabolomics. This trend in biomedical research increasingly focuses to the development of patient-specific therapeutic approaches with higher efficiency and sustainability. Simultaneously undesired adverse reactions are avoided.

View Article and Find Full Text PDF

In the near future personalized medicine with nucleic acids will play a key role in molecular diagnostics and therapy, which require new properties of the nucleic acids, like stability against enzymatic degradation. Here we demonstrate that the replacement of nucleobases with PNA by functional molecules harbouring either a dienophile or a diene reactivity is feasible and confers all new options for functionalization. These newly developed derivatives allow independent multi-ligations of multi-faceted components by use of the inverse Diels Alder technology.

View Article and Find Full Text PDF

Fluorescent proteins (FPs) are established tools for new applications, not-restricted to the cell biological research. They could also be ideal in surgery enhancing the precision to differentiate between the target tissue and the surrounding healthy tissue. FPs like the KillerRed (KRED), used here, can be activated by excitation with visible day-light for emitting active electrons which produce reactive oxygen species (ROS) resulting in photokilling processes.

View Article and Find Full Text PDF

Clinical experiences often document, that a successful tumor control requires high doses of drug applications. It is widely believed that unavoidable adverse reactions could be minimized by using gene-therapeutic strategies protecting the tumor-surrounding healthy tissue as well as the bone-marrow. One new approach in this direction is the use of "Targeted Therapies" realizing a selective drug targeting to gain effectual amounts at the target site, even with drastically reduced application doses.

View Article and Find Full Text PDF

Progress in genome research led to new perspectives in diagnostic applications and to new promising therapies. On account of their specificity and sensitivity, nucleic acids (DNA/RNA) increasingly are in the focus of the scientific interest. While nucleic acids were a target of therapeutic interventions up to now, they could serve as excellent tools in the future, being highly sequence-specific in molecular diagnostics.

View Article and Find Full Text PDF

Among the applications of fullerene technology in health sciences the expanding field of magnetic resonance imaging (MRI) of molecular processes is most challenging. Here we present the synthesis and application of a Gd(x)Sc(3-x)N@C(80)-BioShuttle-conjugate referred to as Gd-cluster@-BioShuttle, which features high proton relaxation and, in comparison to the commonly used contrast agents, high signal enhancement at very low Gd concentrations. This modularly designed contrast agent represents a new tool for improved monitoring and evaluation of interventions at the gene transcription level.

View Article and Find Full Text PDF

There is currently a tremendous interest in developing bioorthogonal "click chemistry" methods for the modification of biopolymers. Very recently, inverse-electron-demand Diels-Alder reactions have received attention, but to date they have not been applied to nucleic acids. Here we describe the first example of DNA modification by inverse-electron-demand Diels-Alder reaction.

View Article and Find Full Text PDF