Objective: Obsessive-compulsive disorder (OCD) is associated with altered brain function related to processing of negative emotions. To investigate neural correlates of negative valence in OCD, we pooled fMRI data of 633 individuals with OCD and 453 healthy controls from 16 studies using different negatively-valenced tasks across the ENIGMA-OCD Working-Group.
Methods: Participant data were processed uniformly using HALFpipe, to extract voxelwise participant-level statistical images of one common first-level contrast: negative vs.
Current knowledge about functional connectivity in obsessive-compulsive disorder (OCD) is based on small-scale studies, limiting the generalizability of results. Moreover, the majority of studies have focused only on predefined regions or functional networks rather than connectivity throughout the entire brain. Here, we investigated differences in resting-state functional connectivity between OCD patients and healthy controls (HC) using mega-analysis of data from 1024 OCD patients and 1028 HC from 28 independent samples of the ENIGMA-OCD consortium.
View Article and Find Full Text PDFThe classical cognitive-behavioral theory of obsessive-compulsive disorder (OCD) holds that compulsions are performed to reduce distress that is evoked by obsessions, whereas a recent neuroscience-inspired theory suggests that compulsivity results from a disbalance between goal-directed and habit-related neural networks. To bridge these theories, we investigated whether the balance between goal-directed and habit networks in patients with OCD was affected during psychological distress. Twenty-three OCD patients and twenty-three healthy controls participated in a controlled stress induction paradigm using the socially evaluated cold-pressor test in a crossover design.
View Article and Find Full Text PDFThe basolateral amygdala (BLA) has a crucial role in emotional learning irrespective of valence. The BLA projection to the nucleus accumbens (NAc) is thought to modulate cue-triggered motivated behaviours, but our understanding of the interaction between these two brain regions has been limited by the inability to manipulate neural-circuit elements of this pathway selectively during behaviour. To circumvent this limitation, we used in vivo optogenetic stimulation or inhibition of glutamatergic fibres from the BLA to the NAc, coupled with intracranial pharmacology and ex vivo electrophysiology.
View Article and Find Full Text PDF