Aspergilli can be used to produce food but can spoil it as well. Both food production and spoilage are initiated by germination of the conidia of these fungi that have been introduced by inoculation and contamination, respectively. Germination of these spores includes activation, swelling, establishment of cell polarity, and formation of a germ tube.
View Article and Find Full Text PDFAntonie Van Leeuwenhoek
September 2022
Aspergilli are among the most abundant fungi worldwide. They degrade organic material and can be pathogens of plants and animals. Aspergilli spread by forming high numbers of conidia.
View Article and Find Full Text PDFAntonie Van Leeuwenhoek
January 2022
Penicillium roqueforti is used for the production of blue-veined cheeses but is a spoilage fungus as well. It reproduces asexually by forming conidia. Germination of these spores can start the spoilage process of food.
View Article and Find Full Text PDFAspergillus niger reproduces asexually by forming conidia. Here, the minimal nutrient requirements were studied that activate germination of A. niger conidia.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
March 2021
Therapeutic options to treat invasive fungal infections are still limited. This makes the development of novel antifungal agents highly desirable. Naturally occurring antifungal peptides represent valid candidates, since they are not harmful for human cells and are endowed with a wide range of activities and their mechanism of action is different from that of conventional antifungal drugs.
View Article and Find Full Text PDFPenicillium roqueforti is a major cause of fungal food spoilage. Its conidia are the main dispersal structures of this fungus and therefore the main cause of food contamination. These stress resistant asexual spores can be killed by preservation methods such as heat treatment.
View Article and Find Full Text PDFAspergillus niger is used by the industry to produce enzymes and metabolites such as citric acid. In liquid cultures, it can grow as a dispersed mycelium or as micro-colonies with a width in the micrometer to millimeter range. Here, it was assessed whether expression of genes encoding secreted enzymes depends on mycelium morphology.
View Article and Find Full Text PDFAspergillus niger secretes proteins throughout the colony except for the zone that forms asexual spores called conidia. Inactivation of flbA that encodes a regulator of G-protein signaling results in colonies that are unable to reproduce asexually and that secrete proteins throughout the mycelium. In addition, the ΔflbA strain shows cell lysis and has thinner cell walls.
View Article and Find Full Text PDFConidia of Aspergillus niger are produced on conidiophores. Here, maturation of conidia on these asexual reproductive structures was studied. Pigmented conidia that had developed on conidiophores for 2, 5, and 8days were similarly resistant to heat and were metabolically active as shown by CO release and conversion of the metabolic probe Tempone.
View Article and Find Full Text PDFAntonie Van Leeuwenhoek
August 2011
The rep1 gene of the maize pathogen Ustilago maydis encodes a pre-pro-protein that is processed in the secretory pathway into 11 peptides. These so-called repellents form amphipathic amyloid fibrils at the surface of aerial hyphae. A SG200 strain in which the rep1 gene is inactivated (∆rep1 strain) is affected in aerial hyphae formation.
View Article and Find Full Text PDFRepellents of the maize pathogen Ustilago maydis are involved in formation of hydrophobic aerial hyphae and in cellular attachment. These peptides, called Rep1-1 to Rep1-11, are encoded by the rep1 gene and result from cleavage of the precursor protein Rep1 during passage of the secretion pathway. Using green fluorescent protein as a reporter, we here show that rep1 is expressed in filaments and not in the yeast form of U.
View Article and Find Full Text PDFUstilago maydis contains one repellent and two class I hydrophobin genes in its genome. The repellent gene rep1 has been described previously. It encodes 11 secreted repellent peptides that result from the cleavage of a precursor protein at KEX2 recognition sites.
View Article and Find Full Text PDFFungal Genet Biol
December 2004
Fluorescent DNA and peptide nucleic acid (PNA) probes were used for in situ hybridisations in colonies of Schizophyllum commune and Aspergillus niger. DNA probes for 18S rRNA did not diffuse through the cell wall after mild chemical fixation. After permeabilising the cell wall with lysing enzymes or slow freezing and embedding, hybridisation was still poor and not reproducible.
View Article and Find Full Text PDF