Publications by authors named "Wieghold S"

The properties of perovskitenaphtho[2,3-]pyrene (NaPy) upconversion devices are investigated by a combination of atomic force microscopy and photoluminescence mapping to understand the role of microscopic heterogeneity in the ensemble device properties. The results emphasize strong microscopic inhomogeneity across the perovskite/NaPy upconversion device due to local formation of NaPy microcrystals. NaPy shows emission from three distinct states in the solid state: S' emission at 520 nm, excimer emission at 560 nm, and S″ emission at 620 nm.

View Article and Find Full Text PDF

Perovskite materials are promising contenders as the active layer in light-harvesting and light-emitting applications if their long-term stability can be sufficiently increased. Chemical and structural engineering are shown to enhance long-term stability, but the increased complexity of the material system also leads to inhomogeneous functional properties across various length scales. Thus, scanning probe and high-resolution microscopy characterization techniques are needed to reveal the role of local defects and the results promise to act as the foundation for future device improvements.

View Article and Find Full Text PDF

Materials in crystalline form possess translational symmetry (TS) when the unit cell is repeated in real space with long- and short-range orders. The periodic potential in the crystal regulates the electron wave function and results in unique band structures, which further define the physical properties of the materials. Amorphous materials lack TS due to the randomization of distances and arrangements between atoms, causing the electron wave function to lack a well-defined momentum.

View Article and Find Full Text PDF

We investigate the limit of X-ray detection at room temperature on rare-earth molecular films using lanthanum and a pyridine-based dicarboxamide organic linker as a model system. Synchrotron X-ray scanning tunneling microscopy is used to probe the molecules with different coverages on a HOPG substrate. X-ray-induced photocurrent intensities are measured as a function of molecular coverage on the sample, allowing a correlation of the amount of La ions with the photocurrent signal strength.

View Article and Find Full Text PDF
Article Synopsis
  • X-rays, discovered in 1895, have diverse applications but typically require large amounts of material for characterization, prompting efforts to reduce material quantity.
  • Researchers have developed a method to analyze the elemental and chemical state of individual atoms, using a specialized tip to detect X-ray-excited currents from iron and terbium atoms.
  • This technique demonstrates atomically localized detection and combines synchrotron X-rays with quantum tunneling, paving the way for advanced experiments to study materials at the single-atom level.
View Article and Find Full Text PDF

Complexes containing rare-earth ions attract great attention for their technological applications ranging from spintronic devices to quantum information science. While charged rare-earth coordination complexes are ubiquitous in solution, they are challenging to form on materials surfaces that would allow investigations for potential solid-state applications. Here we report formation and atomically precise manipulation of rare-earth complexes on a gold surface.

View Article and Find Full Text PDF

Photon upconversion, particularly via triplet-triplet annihilation (TTA), could prove beneficial in expanding the efficiencies and overall impacts of optoelectronic devices across a multitude of technologies. The recent development of bulk metal halide perovskites as triplet sensitizers is one potential step toward the industrialization of upconversion-enabled devices. Here, we investigate the impact of varying additions of bromide into a lead iodide perovskite thin film on the TTA upconversion process in the annihilator molecule rubrene.

View Article and Find Full Text PDF

Triplet-triplet annihilation-based photon upconversion (UC) using bulk perovskite sensitizers has been previously shown to facilitate efficient UC at low fluences. However, the fabrication of the UC devices has not been fully optimized; thus, there is room for improvement. Here, we apply techniques that have been successful in enhancing the performance of perovskite solar cells in order to also improve perovskite-sensitized UC devices.

View Article and Find Full Text PDF

In this review, we highlight the current advancements in the field of triplet sensitization by three-dimensional (3D) perovskite nanocrystals and bulk films. First introduced in 2017, 3D perovskite sensitized upconversion (UC) is a young fast-evolving field due to the tunability of the underlying perovskite material. By tuning the perovskite bandgap, visible-to-ultraviolet, near-infrared-to-visible or green-to-blue UC has been realized, which depicts the broad applicability of this material.

View Article and Find Full Text PDF

Recent advances in perovskite-sensitized photon upconversion via triplet-triplet annihilation (TTA) in rubrene have yielded several unanswered questions about the underlying mechanism and processes occurring at the interface. In particular, the near-infrared perovskite emission is not significantly quenched and a rapid reversible "photobleach" of the upconverted emission can be observed under fairly low excitation densities of 3.2 mW/cm.

View Article and Find Full Text PDF

Silicon dominates contemporary solar cell technologies. But when absorbing photons, silicon (like other semiconductors) wastes energy in excess of its bandgap. Reducing these thermalization losses and enabling better sensitivity to light is possible by sensitizing the silicon solar cell using singlet exciton fission, in which two excited states with triplet spin character (triplet excitons) are generated from a photoexcited state of higher energy with singlet spin character (a singlet exciton).

View Article and Find Full Text PDF

The emerging field of lead halide perovskite-sensitized triplet-triplet annihilation (TTA) in rubrene shows great promise in upconversion applications. By rapidly transferring single charge carriers instead of bound triplet states, perovskites enable a high triplet population in rubrene, yielding low I values. In this contribution, we investigate the role of the triplet population on the upconverted emission.

View Article and Find Full Text PDF

The role of the alkali metal cations in halide perovskite solar cells is not well understood. Using synchrotron-based nano-x-ray fluorescence and complementary measurements, we found that the halide distribution becomes homogenized upon addition of cesium iodide, either alone or with rubidium iodide, for substoichiometric, stoichiometric, and overstoichiometric preparations, where the lead halide is varied with respect to organic halide precursors. Halide homogenization coincides with long-lived charge carrier decays, spatially homogeneous carrier dynamics (as visualized by ultrafast microscopy), and improved photovoltaic device performance.

View Article and Find Full Text PDF

Nanometer-sized metal clusters are prime candidates for photoactivated catalysis, based on their unique tunable optical and electronic properties, combined with a large surface-to-volume ratio. Due to the very small optical cross sections of such nanoclusters, support-mediated plasmonic activation could potentially make activation more efficient. Our support is a semi-transparent gold film, optimized to work in a back-illumination geometry.

View Article and Find Full Text PDF

Nature employs self-assembly to fabricate the most complex molecularly precise machinery known to man. Heteromolecular, two-dimensional self-assembled networks provide a route to spatially organize different building blocks relative to each other, enabling synthetic molecularly precise fabrication. Here we demonstrate optoelectronic function in a near-to-monolayer molecular architecture approaching atomically defined spatial disposition of all components.

View Article and Find Full Text PDF

Electronically excited orbitals play a fundamental role in chemical reactivity and spectroscopy. In nanostructures, orbital shape is diagnostic of defects that control blinking, surface carrier dynamics, and other important optoelectronic properties. We capture nanometer resolution images of electronically excited PbS quantum dots (QDs) by single molecule absorption scanning tunneling microscopy (SMA-STM).

View Article and Find Full Text PDF

Chiral junctions of carbon nanotubes have the potential of serving as optically or electrically controllable switches. To investigate optoelectronic tuning of a chiral junction, we stamp carbon nanotubes onto a transparent gold surface and locate a tube with a semiconducting-metallic junction. We image topography, laser absorption at 532 nm, and measure I-V curves of the junction with nanometer spatial resolution.

View Article and Find Full Text PDF

Background: For certain laboratory investigations it is necessary to obtain native stool samples and process them within a narrow time window at the point of contact or a nearby laboratory. However, it is not known whether it is feasible to obtain stool samples from asymptomatic individuals during an appointment in a study center (SC). We therefore compared participants' preference, feasibility and acceptance of stool sample collection during the appointment at the study center (on-site sampling) to collection at home after the appointment.

View Article and Find Full Text PDF

Molecular self-assembly is a versatile nanofabrication technique with atomic precision en route to molecule-based electronic components and devices. Here, we demonstrate a three-dimensional, bicomponent supramolecular network architecture on an all-carbon sp(2)-sp(3) transparent platform. The substrate consists of hydrogenated diamond decorated with a monolayer graphene sheet.

View Article and Find Full Text PDF