Expeditious and accurate determination of pathogenic bacteria cell viability is of great importance to public health for numerous areas including medical diagnostics, food safety, and environmental monitoring. In this work a cell buoyant mass classifier approach is presented to assess bacteria cell viability in real time. Buoyant mass measurements for live and dead Gram-positive and Gram-negative bacteria populations were acquired with a commercial suspended microchannel resonator, Archimedes, to generate receiver operating characteristic (ROC) curves.
View Article and Find Full Text PDFRegulatory authorities require analytical methods for bacteria detection to analyze large sample volumes (typically 100 mL). Currently only the Membrane Filtration and the Most Probable Number assays analyze such large volumes, while other assays for bacteria detection (ELISA, lateral flow assays, etc.) typically analyze volumes 1000 times smaller.
View Article and Find Full Text PDFMicrofluidic devices fabricated via soft lithography have demonstrated compelling applications such as lab-on-a-chip diagnostics, DNA microarrays, and cell-based assays. These technologies could be further developed by directly integrating microfluidics with electronic sensors and curvilinear substrates as well as improved automation for higher throughput. Current additive manufacturing methods, such as stereolithography and multi-jet printing, tend to contaminate substrates with uncured resins or supporting materials during printing.
View Article and Find Full Text PDFRapid and efficient isolation of bacteria from complex biological matrices is necessary for effective pathogen identification in emerging single-cell diagnostics. Here, we demonstrate the isolation of intact and viable bacteria from whole blood through the selective lysis of blood cells during flow through a porous silica monolith. Efficient mechanical hemolysis is achieved while providing passage of intact and viable bacteria through the monoliths, allowing size-based isolation of bacteria to be performed following selective lysis.
View Article and Find Full Text PDFA sensitive and rapid absorbance based immunosensor that utilizes ex situ functionalized porous silica monoliths as volumetric optical detection elements is demonstrated in this study. The porous monolith structure facilitates high capture probe density and short diffusion length scales, enabling sensitive and rapid assays. Silica monoliths, synthesized and functionalized with immunocapture probes off-chip before integration into a sealed thermoplastic microfluidic device, serve to capture target antigens during perfusion through the porous structure.
View Article and Find Full Text PDFA cross-reactive array of semiselective chemiresistive sensors made of polymer-graphene nanoplatelet (GNP) composite coated electrodes was examined for detection and discrimination of chemical warfare agents (CWA). The arrays employ a set of chemically diverse polymers to generate a unique response signature for multiple CWA simulants and background interferents. The developed sensors' signal remains consistent after repeated exposures to multiple analytes for up to 5 days with a similar signal magnitude across different replicate sensors with the same polymer-GNP coating.
View Article and Find Full Text PDFThe presented work demonstrates novel functionalities of hybrid paper-polymer centrifugal devices for assay performance enhancement that leverage the advantages of both paper-based and centrifugal microfluidic platforms. The fluid flow is manipulated by balancing the capillary force of paper inserts with the centrifugal force generated by disc rotation to enhance the signal of a colorimetric lateral flow immunoassay for pathogenic . Low-cost centrifugation for pre-concentration of bacteria was demonstrated by sample sedimentation at high rotational speeds before supernatant removal by a paper insert via capillary force after deceleration.
View Article and Find Full Text PDFSens Actuators B Chem
October 2016
A sensitive and rapid impedemetric immunosensor is demonstrated utilizing porous volumetric microfluidic detection elements and silver enhanced gold nanoparticle probes. The porous detection elements significantly increase capture probe density and decrease diffusion length scales compared to conventional planar sensors to improve target capture efficiency and enhance impedance signal. In this work, a packed bed of silica beads functionalized with antibody probes serves as a porous sensor element within a thermoplastic microchannel, with an interdigitated gold electrode microarray used to measure impedance changes caused by the concentration dependent formation of silver aggregates.
View Article and Find Full Text PDFPorous volumetric capture elements in microfluidic sensors are advantageous compared to planar capture surfaces due to higher reaction site density and decreased diffusion lengths that can reduce detection limits and total assay time. However a mismatch in refractive indices between the capture matrix and fluid within the porous interstices results in scattering of incident, reflected, or emitted light, significantly reducing the signal for optical detection. Here we demonstrate that perfusion of an index-matching fluid within a porous matrix minimizes scattering, thus enhancing optical signal by enabling the entire capture element volume to be probed.
View Article and Find Full Text PDFElectrospinning is a versatile and cost effective method to fabricate biocompatible nanofibrous materials. The novel nanostructure significantly increases the surface area and mass transfer rate, which improves the biochemical binding effect and sensor signal to noise ratio. This paper presents the electrospinning method of nitrocellulose nanofibrous membrane and its antibody functionalization for application of bacterial and viral pathogen detection.
View Article and Find Full Text PDF