Publications by authors named "Wiederhold K"

Background And Aims: Therapies for chronic hepatitis B virus (HBV) infection are urgently needed because of viral integration, persistence of viral antigen expression, inadequate HBV-specific immune responses, and treatment regimens that require lifelong adherence to suppress the virus. Immune mobilizing monoclonal T Cell receptors against virus (ImmTAV) molecules represent a therapeutic strategy combining an affinity-enhanced T Cell receptor with an anti-CD3 T Cell-activating moiety. This bispecific fusion protein redirects T cells to specifically lyse infected cells expressing the target virus-derived peptides presented by human leukocyte antigen (HLA).

View Article and Find Full Text PDF

The molecular rules driving TCR cross-reactivity are poorly understood and, consequently, it is unclear the extent to which TCRs targeting the same Ag recognize the same off-target peptides. We determined TCR-peptide-HLA crystal structures and, using a single-chain peptide-HLA phage library, we generated peptide specificity profiles for three newly identified human TCRs specific for the cancer testis Ag NY-ESO-1-HLA-A2. Two TCRs engaged the same central peptide feature, although were more permissive at peripheral peptide positions and, accordingly, possessed partially overlapping peptide specificity profiles.

View Article and Find Full Text PDF

Newly transcribed eukaryotic precursor messenger RNAs (pre-mRNAs) are processed at their 3' ends by the ~1-megadalton multiprotein cleavage and polyadenylation factor (CPF). CPF cleaves pre-mRNAs, adds a polyadenylate tail, and triggers transcription termination, but it is unclear how its various enzymes are coordinated and assembled. Here, we show that the nuclease, polymerase, and phosphatase activities of yeast CPF are organized into three modules.

View Article and Find Full Text PDF

At the 3' ends of protein-coding genes, RNA polymerase (Pol) II is dephosphorylated at tyrosine residues (Tyr1) of its C-terminal domain (CTD). In addition, the associated cleavage-and-polyadenylation factor (CPF) cleaves the transcript and adds a poly(a) tail. Whether these events are coordinated and how they lead to transcription termination remains poorly understood.

View Article and Find Full Text PDF

An early role of amyloid-β peptide (Aβ) aggregation in Alzheimer's disease pathogenesis is well established. However, the contribution of intracellular or extracellular forms of Aβ to the neurodegenerative process is a subject of considerable debate. We here describe transgenic mice expressing Aβ1-40 (APP47) and Aβ1-42 (APP48) with a cleaved signal sequence to insert both peptides during synthesis into the endoplasmic reticulum.

View Article and Find Full Text PDF

Immunization against amyloid-β (Aβ) can reduce amyloid accumulation in vivo and is considered a potential therapeutic approach for Alzheimer's disease. However, it has been associated with meningoencephalitis thought to be mediated by inflammatory T-cells. With the aim of producing an immunogenic vaccine without this side effect, we designed CAD106 comprising Aβ1-6 coupled to the virus-like particle Qβ.

View Article and Find Full Text PDF

The poly(A) tail of mRNA has an important influence on the dynamics of gene expression. On one hand, it promotes enhanced mRNA stability to allow production of the protein, even after inactivation of transcription. On the other hand, shortening of the poly(A) tail (deadenylation) slows down translation of the mRNA, or prevents it entirely, by inducing mRNA decay.

View Article and Find Full Text PDF
Article Synopsis
  • Exocytosis from synaptic vesicles involves the formation of a complex between three proteins called SNAREs—synaptobrevin 2, SNAP-25, and syntaxin 1a—that help fuse membranes.
  • A key part of this process is the rapid binding of synaptobrevin to a structure formed by syntaxin 1 and SNAP-25, but its exact role in neurotransmitter release is not fully understood.
  • Research indicates that a specific region in synaptobrevin, referred to as a "trigger site," is essential for effective protein binding and membrane fusion, with mutations in this area leading to severe disruptions in secretion from cells.
View Article and Find Full Text PDF

Rapid neurotransmitter release depends on the ability to arrest the SNAP receptor (SNARE)-dependent exocytosis pathway at an intermediate "cocked" state, from which fusion can be triggered by Ca(2+). It is not clear whether this state includes assembly of synaptobrevin (the vesicle membrane SNARE) to the syntaxin-SNAP-25 (target membrane SNAREs) acceptor complex or whether the reaction is arrested upstream of that step. In this study, by a combination of in vitro biophysical measurements and time-resolved exocytosis measurements in adrenal chromaffin cells, we find that mutations of the N-terminal interaction layers of the SNARE bundle inhibit assembly in vitro and vesicle priming in vivo without detectable changes in triggering speed or fusion pore properties.

View Article and Find Full Text PDF

Background: A causal role of the complement system in Alzheimer's disease pathogenesis has been postulated based on the identification of different activated components up to the membrane attack complex at amyloid plaques in brain. However, histological studies of amyloid plaque bearing APP transgenic mice provided only evidence for an activation of the early parts of the complement cascade. To better understand the contribution of normal aging and amyloid deposition to the increase in complement activation we performed a detailed characterization of the expression of the major mouse complement components.

View Article and Find Full Text PDF

In transgenic animal models, humoral immunity directed against the beta-amyloid peptide (Abeta), which is deposited in the brains of AD patients, can reduce Abeta plaques and restore memory. However, initial clinical trials using active immunization with Abeta1-42 (plus adjuvant) had to be stopped as a subset of patients developed meningoencephalitis, likely due to cytotoxic T cell reactions against Abeta. Previously, we demonstrated that retrovirus-like particles displaying on their surface repetitive arrays of self and foreign Ags can serve as potent immunogens.

View Article and Find Full Text PDF

The three key players in the exocytotic release of neurotransmitters from synaptic vesicles are the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins synaptobrevin 2, syntaxin 1a, and SNAP-25. Their assembly into a tight four-helix bundle complex is thought to pull the two membranes into close proximity. It is debated, however, whether the energy generated suffices for membrane fusion.

View Article and Find Full Text PDF

The neurodegeneration observed in Alzheimer's disease has been associated with synaptic dismantling and progressive decrease in neuronal activity. We tested this hypothesis in vivo by using two-photon Ca2+ imaging in a mouse model of Alzheimer's disease. Although a decrease in neuronal activity was seen in 29% of layer 2/3 cortical neurons, 21% of neurons displayed an unexpected increase in the frequency of spontaneous Ca2+ transients.

View Article and Find Full Text PDF

Human beta-amyloid precursor protein (APP) transgenic mice are commonly used to test potential therapeutics for Alzheimer's disease. We have characterized the dynamics of beta-amyloid (Abeta) generation and deposition following gamma-secretase inhibition with compound LY-411575 [N(2)-[(2S)-2-(3,5-difluorophenyl)-2-hydroxyethanoyl]-N(1)-[(7S)-5-methyl-6-oxo-6,7-dihydro-5H-dibenzo[b,d]azepin-7-yl]-L-alaninamide]. Kinetic studies in preplaque mice distinguished a detergent-soluble Abeta pool in brain with rapid turnover (half-lives for Abeta40 and Abeta42 were 0.

View Article and Find Full Text PDF

The assembly of four soluble N-ethylmaleimide-sensitive factor attachment protein receptor domains into a complex is essential for membrane fusion. In most cases, the four SNARE-domains are encoded by separate membrane-targeted proteins. However, in the exocytotic pathway, two SNARE-domains are present in one protein, connected by a flexible linker.

View Article and Find Full Text PDF

Label-free molecular imaging by mass spectrometry allows simultaneous mapping of multiple analytes in biological tissue sections. In this chapter, the application of this new technology to the detection Abeta peptides in mouse brain sections is discussed.

View Article and Find Full Text PDF

The deposition of the amyloid beta-protein (Abeta) is a hallmark of Alzheimer's disease (AD). One reason for Abeta-accumulation and deposition in the brain may be an altered drainage along perivascular channels. Extracellular fluid is drained from the brain towards the cervical lymph nodes via perivascular channels.

View Article and Find Full Text PDF

The SNARE proteins are essential components of the intracellular fusion machinery. It is thought that they form a tight four-helix complex between membranes, in effect initiating fusion. Most SNAREs contain a single coiled-coil region, referred to as the SNARE motif, directly adjacent to a single transmembrane domain.

View Article and Find Full Text PDF

During exocytosis a four-helical coiled coil is formed between the three SNARE proteins syntaxin, synaptobrevin and SNAP-25, bridging vesicle and plasma membrane. We have investigated the assembly pathway of this complex by interfering with the stability of the hydrophobic interaction layers holding the complex together. Mutations in the C-terminal end affected fusion triggering in vivo and led to two-step unfolding of the SNARE complex in vitro, indicating that the C-terminal end can assemble/disassemble independently.

View Article and Find Full Text PDF

As Alzheimer's disease pathogenesis is associated with the formation of insoluble aggregates of amyloid beta-peptide, approaches allowing the direct, noninvasive visualization of plaque growth in vivo would be beneficial for biomedical research. Here we describe the synthesis and characterization of the near-infrared fluorescence oxazine dye AOI987, which readily penetrates the intact blood-brain barrier and binds to amyloid plaques. Using near-infrared fluorescence imaging, we demonstrated specific interaction of AOI987 with amyloid plaques in APP23 transgenic mice in vivo, as confirmed by postmortem analysis of brain slices.

View Article and Find Full Text PDF

Major pathological findings in Alzheimer's disease (AD) brain include the deposition of amyloid-beta and synapse loss. Synaptic loss has been shown to correlate with the cognitive decline in AD patients, but the relationship between cerebral amyloidosis and synapse loss is complicated by the presence of neurofibrillary tangles and other lesions in AD brain. With the use of the APP23 transgenic mouse model that overexpresses human amyloid precursor protein (APP) with the Swedish double mutation, we investigated whether the development of cortical amyloid deposition was accompanied by synaptic bouton loss.

View Article and Find Full Text PDF

The role of neuropeptides and the significance of peptidergic mechanisms in neurodegenerative diseases are still unclear. In the periphery, nerve injury results in dramatic changes in the expression of neuropeptides. An important question regards to what extent similar changes occur, and similar mechanisms operate, after lesions and/or degeneration in the brain.

View Article and Find Full Text PDF

SNARE proteins on transport vesicles and target membranes have important roles in vesicle targeting and fusion. Therefore, localization and activity of SNAREs have to be tightly controlled. Regulatory proteins bind to N-terminal domains of some SNAREs.

View Article and Find Full Text PDF

Neuropathological changes associated with Alzheimer's disease (AD) such as amyloidplaques, cerebral amyloid angiopathy, and related pathologies are reproduced in APP23 transgenic mice overexpressing amyloid precursor protein (APP) with the Swedish mutation. Magnetic resonance angiography (MRA) was applied to probe, in vivo, the cerebral arterial hemodynamics of these mice. Flow voids were detected at the internal carotid artery of 11-month-old APP23 mice.

View Article and Find Full Text PDF

In vitro and in vivo electrophysiological studies were done to investigate the neuronal function of the hippocampus and prefrontal cortex in the amyloid precursor protein (APP) 23 transgenic mouse model for amyloidosis developed by Sturchler-Pierrat et al. [Proc Natl Acad Sci USA 94 (1997) 13287]. Brain slices were taken from 3, 6, 9, 12, 18 and 24 month old wildtype and hemizygous type APP23 mice.

View Article and Find Full Text PDF