Publications by authors named "Wiedensohler A"

There is a body of evidence that ultrafine particles (UFP, those with diameters ≤ 100 nm) might have significant impacts on health. Accordingly, identifying sources of UFP is essential to develop abatement policies. This study focuses on urban Europe, and aims at identifying sources and quantifying their contributions to particle number size distribution (PNSD) using receptor modelling (Positive Matrix Factorization, PMF), and evaluating long-term trends of these source contributions using the non-parametric Theil-Sen's method.

View Article and Find Full Text PDF

Studies revealed airports as a prominent source of ultrafine particles (UFP), which can disperse downwind to residential areas, raising health concerns. To expand our understanding of how air traffic-related emissions influence total particle number concentration (PNC) in the airport's surrounding areas, we conduct long-term assessment of airborne particulate exposure before and after relocation of air traffic from "Otto Lilienthal" Airport (TXL) to Berlin Brandenburg Airport "Willy Brandt" (BER) in Berlin, Germany. Here, we provide insights into the spatial-temporal variability of PNC measured in 16 schools recruited for Berlin-Brandenburg Air Study (BEAR).

View Article and Find Full Text PDF

New particle formation (NPF) is a major source of atmospheric aerosol particles, including cloud condensation nuclei (CCN), by number globally. Previous research has highlighted that NPF is less frequent but more intense at roadsides compared to urban background. Here, we closely examine NPF at both background and roadside sites in urban Central Europe.

View Article and Find Full Text PDF

Ultrafine particles (UFP, those with diameters ≤ 100 nm), have been reported to potentially penetrate deeply into the respiratory system, translocate through the alveoli, and affect various organs, potentially correlating with increased mortality. The aim of this study is to assess long-term trends (5-11 years) in mostly urban UFP concentrations based on measurements of particle number size distributions (PNSD). Additionally, concentrations of other pollutants and meteorological variables were evaluated to support the interpretations.

View Article and Find Full Text PDF
Article Synopsis
  • This study focuses on how to accurately measure equivalent black carbon (eBC) concentrations using filter absorption photometers (FAPs) by understanding the mass absorption cross-section (MAC).
  • Researchers analyzed data from 22 different sites to compare various methods for calculating MAC, leading to different classifications of eBC such as LeBC, MeBC, and ReBC, with significant differences observed in measurement outcomes.
  • Results showed that MAC varies by site and season, influencing the observed trends in elemental carbon (EC), revealing a need for careful MAC consideration when interpreting eBC data to reduce uncertainty in measurements.
View Article and Find Full Text PDF

Residential wood combustion contributing to airborne particulate matter (PM) was studied for 1 year at two sites in the village of Melpitz. Significant excess pollution was observed at the Melpitz center compared to that at the TROPOS research station Melpitz reference site, situated only 700 m away. Local concentration increments at the village site for the combustion PM constituents organic carbon, elemental carbon, levoglucosan, and benzo[a]pyrene were determined under appropriate wind directions, and their winter mean values were 0.

View Article and Find Full Text PDF

This paper presents the study design of the Berlin-Brandenburg Air study (BEAR-study). We measure air quality in Berlin and Brandenburg before and after the relocation of aircraft (AC) traffic from Tegel (TXL) airport to the new Berlin-Brandenburg airport (BER) and investigate the association of AC-related ultrafine particles (UFP) with health outcomes in schoolchildren. The BEAR-study is a natural experiment examining schoolchildren attending schools near TXL and BER airports, and in control areas (CA) away from both airports and associated air corridors.

View Article and Find Full Text PDF

This study aims to picture the phenomenology of urban ambient total lung deposited surface area (LDSA) (including head/throat (HA), tracheobronchial (TB), and alveolar (ALV) regions) based on multiple path particle dosimetry (MPPD) model during 2017-2019 period collected from urban background (UB, n = 15), traffic (TR, n = 6), suburban background (SUB, n = 4), and regional background (RB, n = 1) monitoring sites in Europe (25) and USA (1). Briefly, the spatial-temporal distribution characteristics of the deposition of LDSA, including diel, weekly, and seasonal patterns, were analyzed. Then, the relationship between LDSA and other air quality metrics at each monitoring site was investigated.

View Article and Find Full Text PDF
Article Synopsis
  • This study examined variations in equivalent black carbon (eBC) levels across urban Europe to assess its potential as a key air quality indicator, collecting data from various measurement stations from 2006 to 2022.
  • The findings emphasized the necessity for standardization in eBC measurements for better comparisons, revealing a decreasing trend in eBC levels from traffic zones to suburban and regional areas, with Southern cities generally having higher concentrations than those in the North.
  • Additionally, fossil fuel combustion, particularly from traffic, was identified as the primary source of eBC, and while there was an overall decreasing trend in eBC levels over the decade, some cities showed stable or slightly rising concentrations.
View Article and Find Full Text PDF

In the Arctic, new particle formation (NPF) and subsequent growth processes are the keys to produce Aitken-mode particles, which under certain conditions can act as cloud condensation nuclei (CCNs). The activation of Aitken-mode particles increases the CCN budget of Arctic low-level clouds and, accordingly, affects Arctic climate forcing. However, the growth mechanism of Aitken-mode particles from NPF into CCN range in the summertime Arctic boundary layer remains a subject of current research.

View Article and Find Full Text PDF
Article Synopsis
  • The study analyzed hourly particle number size distributions (PNSD) from 26 European sites and 1 in the US to understand urban ultrafine particles and their air quality impacts.
  • Findings show that particle number concentrations (PNC) are highest in traffic areas compared to urban background and suburban locations, with noticeable increases as one moves from Northern to Southern Europe.
  • Recommendations highlight the need for specific PNSD monitoring to accurately assess the health effects of nanoparticles, with calls for standardized measurement practices to ensure comparability across different sites.
View Article and Find Full Text PDF

Background: Exposure to air pollutants is one of the major environmental health risks faced by populations globally. Information about inhaled particle deposition dose is crucial in establishing the dose-response function for assessing health-related effects due to exposure to air pollution.

Objective: This study aims to quantify the respiratory tract deposition (RTD) of equivalent black carbon (BC) particles in healthy young adults during a real-world commuting scenario, analyze factors affecting RTD of BC, and provide key parameters for the assessment of RTD.

View Article and Find Full Text PDF

The airborne transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been identified as a potential pandemic challenge, especially in poorly ventilated indoor environments, such as certain hospitals, schools, public buildings, and transports. The impacts of meteorological parameters (temperature and humidity) and physical property (droplet size) on the airborne transmission of coronavirus in indoor settings have been previously investigated. However, the impacts of chemical properties of viral droplets and aerosol particles (i.

View Article and Find Full Text PDF

The hygroscopicity of marine aerosols may largely impact particle optical properties, cloud activation ability, and consequently the global climate system. This study highlights findings from real-time hygroscopicity and chemical composition measurements in three open-ocean cruises over the Atlantic Ocean. Spatial variations in hygroscopicity (κ) for marine boundary layer particles (≤300 nm) were provided for the first time covering nearly 100° of the latitude over the Atlantic Ocean, ranging from 0.

View Article and Find Full Text PDF
Article Synopsis
  • * The study analyzed data from 22 sites across Europe from 2013-2019, using advanced techniques to identify and quantify various OA components like hydrocarbon-like OA, biomass burning OA, and cooking-like OA.
  • * The findings highlight that oxygenated OA makes up the majority of OA mass, with solid fuel combustion contributing notably, especially in winter, providing valuable data for air quality improvements.
View Article and Find Full Text PDF

Atmospheric particles are important reaction vessels for multiphase chemistry. We conducted a meta-analysis of previous field observations in various environments (includes ocean, urban and rural regions), showing that particle hygroscopicity inhomogeneity (PHI) is ubiquitous for the continental atmospheric particles, in which a considerable part of the particulate matters is hydrophobic (10%-33% on average). However, the effects of PHI in quantifying the uptake process of reactive gases are still unclear.

View Article and Find Full Text PDF

Background: Data from extensive mobile measurements (MM) of air pollutants provide spatially resolved information on pedestrians' exposure to particulate matter (black carbon (BC) and PM mass concentrations).

Objective: We present a distributional regression model in a Bayesian framework that estimates the effects of spatiotemporal factors on the pollutant concentrations influencing pedestrian exposure.

Methods: We modeled the mean and variance of the pollutant concentrations obtained from MM in two cities and extended commonly used lognormal models with a lognormal-normal convolution (logNNC) extension for BC to account for instrument measurement error.

View Article and Find Full Text PDF

More representative data on source-specific particle number emission rates and associated exposure in European households are needed. In this study, indoor and outdoor particle number size distributions (10-800 nm) were measured in 40 German households under real-use conditions in over 500 days. Particle number emission rates were derived for around 800 reported indoor source events.

View Article and Find Full Text PDF

The first case of the coronavirus disease 2019 (COVID-19), the novel contagious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was reported in Wuhan, China in December 2019 [...

View Article and Find Full Text PDF

In the present work, we discuss the light-weight gas sensor system (LWGSS) [350 g, 7″ ∗ 3″] originally developed at CSIR-National Physical Laboratory. This instrument is equipped with low-cost electrolytic gas sensors for quantifying major gaseous pollutants present in the atmosphere. Alphasense electrochemical gas sensors were used to measure gas pollutant species such as CO, SO, NO, O and HS.

View Article and Find Full Text PDF

The oxidation of nitric oxide to nitrogen dioxide by hydroperoxy (HO) and organic peroxy radicals (RO) is responsible for the chemical net ozone production in the troposphere and for the regeneration of hydroxyl radicals, the most important oxidant in the atmosphere. In Summer 2014, a field campaign was conducted in the North China Plain, where increasingly severe ozone pollution has been experienced in the last years. Chemical conditions in the campaign were representative for this area.

View Article and Find Full Text PDF

Quantification of the exposure of urban residents to ultrafine particle number concentrations (UFP) is challenging due to its high spatial and temporal variability. Hence, statistical models, e.g.

View Article and Find Full Text PDF

As nitrous acid (HONO) photolysis is an important source of hydroxyl radical (OH), apportionment of the ambient HONO sources is necessary to better understand atmospheric oxidation. Based on the data HONO-related species and various parameters measured during the one-month campaign at Wangdu (a rural site in North China plain) in summer 2014, a box model was adopted with input of current literature parametrizations for various HONO sources (nitrogen dioxide heterogeneous conversion, photoenhanced conversion, photolysis of adsorbed nitric acid and particulate nitrate, acid displacement, and soil emission) to reveal the relative importance of each source at the rural site. The simulation results reproduced the observed HONO production rates during noontime in general but with large uncertainty from both the production and destruction terms.

View Article and Find Full Text PDF

In this study, we present the development of a mobile system to measure real-world total respiratory tract deposition of inhaled ambient black carbon (BC). Such information can be used to supplement the existing knowledge on air pollution-related health effects, especially in the regions where the use of standard methods and intricate instrumentation is limited. The study is divided in two parts.

View Article and Find Full Text PDF

Recent studies demonstrate that Black Carbon (BC) pollution in economically developing megacities remain higher than the values, which the World Health Organization considers to be safe. Despite the scientific evidence of the degrees of BC exposure, there is still a lack of understanding on how the severe levels of BC pollution affect human health in these regions. We consider information on the respiratory tract deposition dose (DD) of BC to be essential in understanding the link between personal exposure to air pollutants and corresponding health effects.

View Article and Find Full Text PDF