Publications by authors named "Widmar Tanner"

After a brief prologue on Otto Kandler's life, we describe briefly his pioneering work on photosynthesis (photophosphorylation and the carbon cycle) and his key participation in the discovery of the concept of three forms of life (Archaea, Prokarya, and Eukarya). With Otto Kandler's passing, both the international photosynthesis and microbiology communities have lost an internationally unique, eminent, and respected researcher and teacher who exhibited a rare vibrancy and style.

View Article and Find Full Text PDF

Lateral segregation of plasma membrane lipids is a generally accepted phenomenon. Lateral lipid microdomains of specific composition, structure and biological functions are established as a result of simultaneous action of several competing mechanisms which contribute to membrane organization. Various lines of evidence support the conclusion that among those mechanisms, the membrane potential plays significant and to some extent unique role.

View Article and Find Full Text PDF

Soluble sugars serve five main purposes in multicellular organisms: as sources of carbon skeletons, osmolytes, signals, and transient energy storage and as transport molecules. Most sugars are derived from photosynthetic organisms, particularly plants. In multicellular organisms, some cells specialize in providing sugars to other cells (e.

View Article and Find Full Text PDF

The existence of specialized microdomains in plasma membranes, postulated for almost 25 years, has been popularized by the concept of lipid or membrane rafts. The idea that detergent-resistant membranes are equivalent to lipid rafts, which was generally abandoned after a decade of vigorous data accumulation, contributed to intense discussions about the validity of the raft concept. The existence of membrane microdomains, meanwhile, has been verified by unequivocal independent evidence.

View Article and Find Full Text PDF

In many eukaryotes, a significant part of the plasma membrane is closely associated with the dynamic meshwork of cortical endoplasmic reticulum (cortical ER). We mapped temporal variations in the local coverage of the yeast plasma membrane with cortical ER pattern and identified micron-sized plasma membrane domains clearly different in cortical ER persistence. We show that clathrin-mediated endocytosis is initiated outside the cortical ER-covered plasma membrane zones.

View Article and Find Full Text PDF

The plasma membrane of Saccharomyces cerevisiae contains large microdomains enriched in ergosterol, which house at least nine integral proteins, including proton symporters. The domains adopt a characteristic structure of furrow-like invaginations typically seen in freeze-fracture pictures of fungal cells. Being stable for the time comparable with the cell cycle duration, they might be considered as fixed islands (rafts) in an otherwise fluid yeast plasma membrane.

View Article and Find Full Text PDF

The plasma membrane of the yeast Saccharomyces cerevisiae contains stably distributed lateral domains of specific composition and structure, termed MCC (membrane compartment of arginine permease Can1). Accumulation of Can1 and other specific proton symporters within MCC is known to regulate the turnover of these transporters and is controlled by the presence of another MCC protein, Nce102. We show that in an NCE102 deletion strain the function of Nce102 in directing the specific permeases into MCC can be complemented by overexpression of the NCE102 close homolog FHN1 (the previously uncharacterized YGR131W) as well as by distant Schizosaccharomyces pombe homolog fhn1 (SPBC1685.

View Article and Find Full Text PDF

Plasma membrane of the yeast Saccharomyces cerevisiae contains stable lateral domains. We have investigated the ultrastructure of one type of domain, the membrane compartment of Can1 (MCC). In two yeast strains (nce102Delta and pil1Delta) that are defective in segregation of MCC-specific proteins, we found the plasma membrane to be devoid of the characteristic furrow-like invaginations.

View Article and Find Full Text PDF

In this study, we investigate whether the stable segregation of proteins and lipids within the yeast plasma membrane serves a particular biological function. We show that 21 proteins cluster within or associate with the ergosterol-rich membrane compartment of Can1 (MCC). However, proteins of the endocytic machinery are excluded from MCC.

View Article and Find Full Text PDF

The plasma membrane potential is mainly considered as the driving force for ion and nutrient translocation. Using the yeast Saccharomyces cerevisiae as a model organism, we have discovered a novel role of the membrane potential in the organization of the plasma membrane. Within the yeast plasma membrane, two non-overlapping sub-compartments can be visualized.

View Article and Find Full Text PDF

Proteins can be modified by a large variety of covalently linked saccharides. The present review concentrates on two types, protein N-glycosylation and protein O-mannosylation, which, with only a few exceptions, are evolutionary conserved from yeast to man. They are also distinguished by some special features: The corresponding glycosylation processes start in the endoplasmatic reticulum, are continued in the Golgi apparatus, and require dolichol-activated precursors for the initial biosynthetic steps.

View Article and Find Full Text PDF

The hexose-proton symporter HUP1 shows a spotty distribution in the plasma membrane of the green alga Chlorella kessleri. Chlorella cannot be transformed so far. To study the membrane localization of the HUP1 protein in detail, the symporter was fused to green fluorescent protein (GFP) and heterologously expressed in Saccharomyces cerevisiae and Schizosaccharomyces pombe.

View Article and Find Full Text PDF

A family of covalently linked cell wall proteins of Saccharomyces cerevisiae, called Pir proteins, are characterized by up to 10 conserved repeating units. Ccw5/Pir4p contains only one complete repeating sequence and its deletion caused a release of the protein into the medium. The exchange of each of three glutamines (Gln69, Gln74, Gln76) as well as one aspartic acid (Asp72) within the repeating unit leads to a loss of the protein from the cell wall.

View Article and Find Full Text PDF

A considerable amount of evidence supports the idea that lipid rafts are involved in many cellular processes, including protein sorting and trafficking. We show that, in this process, also a non-raft lipid, phosphatidylethanolamine (PE), has an indispensable function. The depletion of this phospholipid results in an accumulation of a typical raft-resident, the arginine transporter Can1p, in the membranes of Golgi, while the trafficking of another plasma membrane transporter, Pma1p, is interrupted at the level of the ER.

View Article and Find Full Text PDF

Recently, lipid-raft-based subdomains within the plasma membrane of living Saccharomyces cerevisiae cells were visualized using green fluorescent protein fusions, and non-overlapping subdomains containing either Pma1p or Can1p were distinguished. In this study, the long-term stability of the subdomains was investigated. Experiments with latrunculin A and nocodazole ruled out the involvement of cytoskeletal components in the stabilization of the subdomains.

View Article and Find Full Text PDF

Glycosyl hydrolases and transferases are crucial for the formation of a rigid but at the same time plastic cell wall in yeasts and fungi. The Saccharomyces cerevisiae glucan hydrolase family 17 (GH17) contains the soluble cell-wall proteins Scw4p, Scw10p, Scw11p and Bgl2p. For Bgl2p, endoglucanase/glucanosyltransferase activity has been demonstrated, and Scw11p has been shown to be involved in cell separation.

View Article and Find Full Text PDF

O-mannosylation is an important protein modification in eukaryotes that is initiated by an evolutionarily conserved family of protein O-mannosyltransferases. The first mammalian protein O-mannosyltransferase gene described was the human POMT1. Mutations in the hPOMT1 gene are responsible for Walker-Warburg syndrome (WWS), a severe recessive congenital muscular dystrophy associated with defects in neuronal migration that produce complex brain and eye abnormalities.

View Article and Find Full Text PDF

The covalently linked cell wall protein Ccw12p of Saccharomyces cerevisiae is a GPI-anchored protein (V. Mrsa et al., 1999, J Bacteriol 181: 3076-3086).

View Article and Find Full Text PDF

Leaf senescence is the final stage of leaf development in which the nutrients invested in the leaf are remobilized to other parts of the plant. Whereas senescence is accompanied by a decline in leaf cytokinin content, exogenous application of cytokinins or an increase of the endogenous concentration delays senescence and causes nutrient mobilization. The finding that extracellular invertase and hexose transporters, as the functionally linked enzymes of an apolasmic phloem unloading pathway, are coinduced by cytokinins suggested that delay of senescence is mediated via an effect on source-sink relations.

View Article and Find Full Text PDF

In yeasts and other fungi, O-mannosyl glycans constitute a major protein modification that is essential for cell viability. For several decades, protein O-mannosylation was considered a yeast-specific modification. Thus, it was especially interesting when it became evident that O-mannosyl glycans in mammals are not as rare as previously thought.

View Article and Find Full Text PDF

Different distribution patterns of the arginine/H+ symporter Can1p, the H+ plasma membrane ATPase Pma1p, and the hexose transport facilitator Hxt1p within the plasma membrane of living Saccharomyces cerevisiae cells were visualized using fluorescence protein tagging of these proteins. Although Hxt1p-GFP was evenly distributed through the whole cell surface, Can1p-GFP and Pma1p-GFP were confined to characteristic subregions in the plasma membrane. Pma1p is a well-documented raft protein.

View Article and Find Full Text PDF