Unlabelled: Respiratory syncytial virus (RSV) is the leading viral pathogen associated with acute lower respiratory tract infection and hospitalization in children < 5 years of age worldwide. While there are known clinical risk factors for severe RSV infection, the majority of those hospitalized are previously healthy infants. There is consequently an unmet need to identify biomarkers that predict host response, disease severity, and sequelae.
View Article and Find Full Text PDFRecombinant measles virus (rMV) vectors expressing heterologous viral membrane protein antigens are potentially useful as vaccines. Genes encoding the mumps virus haemagglutinin-neuraminidase (MuV-HN), the influenza virus haemagglutinin (Flu-HA) or the respiratory syncytial virus fusion (RSV-F) proteins were inserted into the genome of a live attenuated vaccine strain of measles virus. Additionally, in this case rMV with the MuV-HN or the influenza HA inserts, chimeric constructs were created that harboured the measles virus native haemagglutinin or fusion protein cytoplasmic domains.
View Article and Find Full Text PDFRSV is an important cause of lower respiratory tract infections in children, the elderly and in those with underlying medical conditions. Although the high disease burden indicates an urgent need for a vaccine against RSV, no licensed RSV vaccine is currently available. We developed an RSV vaccine candidate based on the low-seroprevalent human adenovirus serotypes 26 and 35 (Ad26 and Ad35) encoding the RSV fusion (F) gene.
View Article and Find Full Text PDFUnlabelled: Elderly humans are prone to severe infection with human respiratory syncytial virus (HRSV). The aging of today's human population warrants the development of protective vaccination strategies aimed specifically at the elderly. This may require special approaches due to deteriorating immune function.
View Article and Find Full Text PDFBackground: Virus neutralizing antibodies against respiratory syncytial virus (RSV) are considered important correlates of protection for vaccine evaluation. The established plaque reduction assay is time consuming, labor intensive and highly variable.
Methods: Here, a neutralization assay based on a modified RSV strain expressing the green fluorescent protein in combination with automated detection and quantification of plaques is described.
Respiratory Syncytial Virus is a frequent cause of severe bronchiolitis in children. To improve our understanding of systemic host responses to RSV, we compared BALB/c mouse gene expression responses at day 1, 2, and 5 during primary RSV infection in lung, bronchial lymph nodes, and blood. We identified a set of 53 interferon-associated and innate immunity genes that give correlated responses in all three murine tissues.
View Article and Find Full Text PDFVaccine-induced immunity has been shown to alter the course of a respiratory syncytial virus (RSV) infection both in murine models and in humans. To elucidate which mechanisms underlie the effect of vaccine-induced immunity on the course of RSV infection, transcription profiles in the lungs of RSV-infected mice were examined by microarray analysis. Three models were used: RSV reinfection as a model for natural immunity, RSV challenge after formalin-inactivated RSV vaccination as a model for vaccine-enhanced disease, and RSV challenge following vaccination with recombinant RSV virus lacking the G gene (DeltaG-RSV) as a model for vaccine-induced immunity.
View Article and Find Full Text PDFBackground: Respiratory syncytial virus (RSV) is a primary cause of serious lower respiratory tract illness for which there is still no safe and effective vaccine available. Using reverse genetics, recombinant (r)RSV and an rRSV lacking the G gene (DeltaG) were constructed based on a clinical RSV isolate (strain 98-25147-X).
Results: Growth of both recombinant viruses was equivalent to that of wild type virus in Vero cells, but was reduced in human epithelial cells like Hep-2.
The B cell lymphoma-6 (Bcl-6) and Bcl-xL proteins are expressed in germinal center B cells and enable them to endure the proliferative and mutagenic environment of the germinal center. By introducing these genes into peripheral blood memory B cells and culturing these cells with two factors produced by follicular helper T cells, CD40 ligand (CD40L) and interleukin-21 (IL-21), we convert them to highly proliferating, cell surface B cell receptor (BCR)-positive, immunoglobulin-secreting B cells with features of germinal center B cells, including expression of activation-induced cytidine deaminase (AID). We generated cloned lines of B cells specific for respiratory syncytial virus and used these cells as a source of antibodies that effectively neutralized this virus in vivo.
View Article and Find Full Text PDFThree mutants with deletions in the E2 gene of the infectious DNA copy of the classical swine fever virus (CSFV) strain-C were constructed: one missing the B/C domain of CSFV-E2 between amino acids (aa) 693 and 746, one missing the A domain between aa 800 and 864, and one missing the complete E2 between aa 689 and 1062. All three CSFV-E2 deletion mutants were unable to generate viable virus, indicating that each of the antigenic domains of E2 is essential for viability of CSFV. To rescue the CSFV-E2 deletion mutants SK6 cell lines constitutively expressing glycoprotein E2 of CSFV were generated.
View Article and Find Full Text PDFThree chimeric classical swine fever virus (CSFV)/bovine viral diarrhoea virus (BVDV) full-length DNA copies were constructed, based on the infectious DNA copy of the CSFV vaccine strain C. The antigenic region of E2 and/or the complete E(RNS) gene were replaced by the analogous sequence of BVDV II strain 5250. Viable chimeric virus Flc11, in which E(RNS) was replaced, was directly recovered from supernatant of SK6.
View Article and Find Full Text PDFAn SK6 cell line (SK6c26) which constitutively expressed the glycoprotein E(rns) of classical swine fever virus (CSFV) was used to rescue CSFV E(rns) deletion mutants based on the infectious copy of CSFV strain C. The biochemical properties of E(rns) from this cell line were indistinguishable from those of CSFV E(rns). Two E(rns) deletion mutants were constructed, virus Flc23 and virus Flc22.
View Article and Find Full Text PDFNucleic Acid Sequence Based Amplification (iNASBA), an isothermal amplification technique for nucleic acids, was evaluated for the identification of medically important Candida species using primers selected from 18S rRNA sequences conserved in fungi. An RNA fragment of 257 nucleotides was amplified for Candida albicans. Nineteen different fungi were tested for rRNA amplification with the NASBA.
View Article and Find Full Text PDFA pig pestivirus isolate, strain H, was characterized by using reverse transcription-PCR (RT-PCR) and direct sequencing of the amplicons. A duplication of 74 nucleotides was found at the 5' terminus of the 5' noncoding (NC) region, which was also found in RNA isolates from tonsils from two other pigs from the same farm. When the duplication was omitted, the 5' NC region showed 97.
View Article and Find Full Text PDFSixteen classical swine fever virus (CSFV) field isolates from outbreaks of classical swine fever from the period between February 1997 and March 1998 in the Netherlands were sequence analysed. Parts of the 5' noncoding region (5'NCR) and the E1/E2 gene were sequenced after RT-PCR. The obtained sequences were compared with isolates of recent outbreaks in Europe and those of former outbreaks in the Netherlands.
View Article and Find Full Text PDFA new method for the recovery of infectious classical swine fever virus (CSFV) from full-length genomic cDNA clones of the C-strain was developed. Classical reverse genetics is based on transfection of in vitro transcribed RNA to target cells to recover RNA viruses. However, the specific infectivity of such in vitro transcribed RNA in swine kidney cells is usually low.
View Article and Find Full Text PDFPCR-single-strand conformation polymorphism (PCR-SSCP) analysis is a rapid and convenient technique for the detection of mutations and allelic variants. We have adapted this technique for the identification of bacteria by PCR with fluorescein-labeled primers chosen from the conserved regions of the 16S rRNA gene flanking a variable region. The PCR product was denatured, separated on a nondenaturing gel, and detected by an automated DNA sequencer.
View Article and Find Full Text PDFJ Clin Microbiol
December 1994
A new molecular biological approach for the identification of bacteria is described. This approach employs PCR of bacterial cell lysates with conserved primers located in the 16S rRNA sequence flanking a variable region, and analysis of the amplified product was based on the principle of single-strand conformation polymorphism (SSCP). The PCR product was denatured and separated on a nondenaturing polyacrylamide gel.
View Article and Find Full Text PDFImmunomagnetic beads were prepared using either protein A (PA) or protein G (PG) coupled to magnetic beads for binding antibodies at their Fc region. The performance of these beads was compared with commercially available beads coated with goat anti-mouse (G alpha M) immunoglobulins. Both the PA- and PG-beads possessed a higher binding capacity than the G alpha M-beads for the monoclonal antibodies tested, although, PA bound weakly with some IgG1 antibodies.
View Article and Find Full Text PDFRapid detection of salmonellae in chicken meat was accomplished by using the magnetic immuno-polymerase chain reaction assay (MIPA). A direct polymerase chain reaction assay performed with chicken meat spiked with Salmonella typhimurium resulted in poor sensitivity (approximately 10(7) CFU/g of meat). The use of immunoseparation with a Salmonella serogroup B-specific monoclonal antibody improved the sensitivity, but enrichment was required for the detection of low levels of contamination.
View Article and Find Full Text PDFDirect polymerase chain reaction (PCR)-based detection with fecal specimens is hampered by inhibitory compounds, such as bilirubin and bile salts. These fecal compounds showed significant inhibition of PCR at low concentrations (10 to 50 micrograms/ml). For direct PCR analysis, fecal samples must be diluted 500-fold to overcome inhibition.
View Article and Find Full Text PDFEur J Clin Microbiol Infect Dis
November 1991
A new technique, the Magnetic Immuno PCR Assay (MIPA), has been developed for the detection of Salmonella. The assay utilizes magnetic particles coated with monoclonal antibodies against Salmonella to extract these bacteria from the sample. Trapped bacteria are lysed, and the supernatant, which contains bacterial DNA, is then subjected to the polymerase chain reaction (PCR) using primers from the Salmonella typhimurium origin of DNA replication to amplify a 163 bp region.
View Article and Find Full Text PDF