Background: Gallotannin (GT) is a polyphenol that possesses interesting anticancer properties. However, the mechanisms underlying its antitumor effects have not been well defined.
Objective: This study was designed to clarify the mechanisms underlying GT antitumor effects in colon cancer cell lines.
Inappropriate activation of PI3K signaling has been implicated strongly in human cancer. Although studies on the role of PI3K signaling in breast tumorigenesis and progression have focused most intensively on PI3Kα, a role for PI3Kβ has begun to emerge. The PI3Kβ isoform is unique among class IA PI3K enzymes in that it is activated by both receptor tyrosine kinases and G-protein-coupled receptors (GPCR).
View Article and Find Full Text PDFPhosphoinositide 3-kinase gamma (PI3Kγ) has profound roles downstream of G-protein-coupled receptors in inflammation, cardiac function, and tumor progression. To gain insight into how the enzyme's activity is shaped by association with its p101 adaptor subunit, lipid membranes, and Gβγ heterodimers, we mapped these regulatory interactions using hydrogen-deuterium exchange mass spectrometry. We identify residues in both the p110γ and p101 subunits that contribute critical interactions with Gβγ heterodimers, leading to PI3Kγ activation.
View Article and Find Full Text PDFMixed lineage kinase 3 (MLK3) is a mitogen-activated protein kinase kinase kinase (MAP3K) that activates MAPK signaling pathways and regulates cellular responses such as proliferation, migration and apoptosis. Here we report high levels of total and phospho-MLK3 in ovarian cancer cell lines in comparison to immortalized nontumorigenic ovarian epithelial cell lines. Using small interfering RNA (siRNA)-mediated gene silencing, we determined that MLK3 is required for the invasion of SKOV3 and HEY1B ovarian cancer cells.
View Article and Find Full Text PDFMixed lineage kinase 3 (MLK3) is a mitogen activated protein kinase kinase kinase (MAP3K) that activates multiple MAPK signaling pathways. Nuclear factor kappa B (NF-kappaB) is a transcription factor that has important functions in inflammation, immunity and cell survival. We found that silencing mlk3 expression with RNA interference (RNAi) in SKOV3 human ovarian cancer epithelial cells and NIH-3T3 murine fibroblasts led to a reduction in the level of the inhibitor of kappa B alpha (IkappaBalpha) protein.
View Article and Find Full Text PDF