Publications by authors named "Widdel F"

The aromatic hydrocarbon naphthalene, which occurs in coal and oil, can be degraded by aerobic or anaerobic microorganisms. A wide-spread electron acceptor for the latter is sulfate. Evidence for in situ naphthalene degradation stems in particular from the detection of 2-naphthoate and [5,6,7,8]-tetrahydro-2-naphthoate in oil field samples.

View Article and Find Full Text PDF

Ethane is the second most abundant component of natural gas in addition to methane, and-similar to methane-is chemically unreactive. The biological consumption of ethane under anoxic conditions was suggested by geochemical profiles at marine hydrocarbon seeps, and through ethane-dependent sulfate reduction in slurries. Nevertheless, the microorganisms and reactions that catalyse this process have to date remained unknown.

View Article and Find Full Text PDF

The anaerobic formation and oxidation of methane involve unique enzymatic mechanisms and cofactors, all of which are believed to be specific for C-compounds. Here we show that an anaerobic thermophilic enrichment culture composed of dense consortia of archaea and bacteria apparently uses partly similar pathways to oxidize the C hydrocarbon butane. The archaea, proposed genus 'Candidatus Syntrophoarchaeum', show the characteristic autofluorescence of methanogens, and contain highly expressed genes encoding enzymes similar to methyl-coenzyme M reductase.

View Article and Find Full Text PDF

Emissions of methane, a potent greenhouse gas, from marine sediments are controlled by anaerobic oxidation of methane coupled primarily to sulphate reduction (AOM). Sulphate-coupled AOM is believed to be mediated by a consortium of methanotrophic archaea (ANME) and sulphate-reducing Deltaproteobacteria but the underlying mechanism has not yet been resolved. Here we show that zero-valent sulphur compounds (S(0)) are formed during AOM through a new pathway for dissimilatory sulphate reduction performed by the methanotrophic archaea.

View Article and Find Full Text PDF

Anaerobic oxidation of methane (AOM) coupled to sulfate reduction (SR) at marine gas seeps is performed by archaeal-bacterial consortia that have so far not been cultivated in axenic binary or pure cultures. Knowledge about possible biochemical reactions in AOM consortia is based on metagenomic retrieval of genes related to those in archaeal methanogenesis and bacterial sulfate reduction, and identification of a few catabolic enzymes in protein extracts. Whereas the possible enzyme for methane activation (a variant of methyl-coenzyme M reductase, Mcr) was shown to be harboured by the archaea, enzymes for sulfate activation and reduction have not been localized so far.

View Article and Find Full Text PDF

Aromatic hydrocarbons are among the main constituents of crude oil and represent a major fraction of biogenic hydrocarbons. Anthropogenic influences as well as biological production lead to exposure and accumulation of these toxic chemicals in the water column and sediment of marine environments. The ability to degrade these compounds in situ has been demonstrated for oxygen- and sulphate-respiring marine micro-organisms.

View Article and Find Full Text PDF

Iron (Fe(0) ) corrosion in anoxic environments (e.g. inside pipelines), a process entailing considerable economic costs, is largely influenced by microorganisms, in particular sulfate-reducing bacteria (SRB).

View Article and Find Full Text PDF

Microbial degradation of substrates to terminal products is commonly understood as a unidirectional process. In individual enzymatic reactions, however, reversibility (reverse reaction and product back flux) is common. Hence, it is possible that entire pathways of microbial degradation are associated with back flux from the accumulating product pool through intracellular intermediates into the substrate pool.

View Article and Find Full Text PDF

Diverse microorganisms have been described to degrade petroleum hydrocarbons anaerobically. Strains able to utilize n-alkanes do not grow with aromatic hydrocarbons, whereas strains able to utilize aromatic hydrocarbons do not grow with n-alkanes. To investigate this specificity in more detail, three anaerobic n-alkane degraders (two denitrifying, one sulfate-reducing) and eight anaerobic alkylbenzene degraders (five denitrifying, three sulfate-reducing) were incubated with mixtures of n-alkanes and toluene.

View Article and Find Full Text PDF

Microorganisms can degrade saturated hydrocarbons (alkanes) not only under oxic but also under anoxic conditions. Three denitrifying isolates (strains HxN1, OcN1, HdN1) able to grow under anoxic conditions by coupling alkane oxidation to CO(2) with NO(3) (-) reduction to N(2) were compared with respect to their alkane metabolism. Strains HxN1 and OcN1, which are both Betaproteobacteria, utilized n-alkanes from C(6) to C(8) and C(8) to C(12) respectively.

View Article and Find Full Text PDF

The anaerobic oxidation of methane (AOM) with sulfate controls the emission of the greenhouse gas methane from the ocean floor. AOM is performed by microbial consortia of archaea (ANME) associated with partners related to sulfate-reducing bacteria. In vitro enrichments of AOM were so far only successful at temperatures ≤25 °C; however, energy gain for growth by AOM with sulfate is in principle also possible at higher temperatures.

View Article and Find Full Text PDF

Anaerobic oxidation of methane (AOM) with sulfate is catalysed by microbial consortia of archaea and bacteria affiliating with methanogens and sulfate-reducing Deltaproteobacteria respectively. There is evidence that methane oxidation is catalysed by enzymes related to those in methanogenesis, but the enzymes for sulfate reduction coupled to AOM have not been examined. We collected microbial mats with high AOM activity from a methane seep in the Black Sea.

View Article and Find Full Text PDF

An anaerobic nitrate-reducing enrichment culture was established with a cyclic saturated petroleum hydrocarbon, cyclohexane, the fate of which in anoxic environments has been scarcely investigated. GC-MS showed cyclohexylsuccinate as a metabolite, in accordance with an anaerobic enzymatic activation of cyclohexane by carbon-carbon addition to fumarate. Furthermore, long-chain cyclohexyl-substituted cell fatty acids apparently derived from cyclohexane were detected.

View Article and Find Full Text PDF

The anaerobic oxidation of methane (AOM) by methanotrophic archaea and sulfate-reducing bacteria is the major sink of methane formed in marine sediments. The study of AOM as well as of methanogenesis in different habitats is essentially connected with the in situ analysis of stable isotope ((13) C/(12) C, D/H) signatures (δ-values). For their kinetic interpretation, experimental (cultivation-based) isotope fractionation factors (α-values) are richly available in the case of methanogenesis, but are scarce in the case of AOM.

View Article and Find Full Text PDF

The anaerobic biodegradation of naphthalene, an aromatic hydrocarbon in tar and petroleum, has been repeatedly observed in environments but scarcely in pure cultures. To further explore the relationships and physiology of anaerobic naphthalene-degrading microorganisms, sulfate-reducing bacteria (SRB) were enriched from a Mediterranean sediment with added naphthalene. Two strains (NaphS3, NaphS6) with oval cells were isolated which showed naphthalene-dependent sulfate reduction.

View Article and Find Full Text PDF

Microbial mats collected at cold methane seeps in the Black Sea carry out anaerobic oxidation of methane (AOM) to carbon dioxide using sulfate as the electron acceptor. These mats, which predominantly consist of sulfate-reducing bacteria and archaea of the ANME-1 and ANME-2 type, contain large amounts of proteins very similar to methyl-coenzyme M reductase from methanogenic archaea. Mass spectrometry of mat samples revealed the presence of two nickel-containing cofactors in comparable amounts, one with the same mass as coenzyme F430 from methanogens (m/z = 905) and one with a mass that is 46 Da higher (m/z = 951).

View Article and Find Full Text PDF

The anaerobic biodegradation of benzene, a common constituent of petroleum and one of the least reactive aromatic hydrocarbons, is insufficiently understood with respect to the involved microorganisms and their metabolism. To study these aspects, sulfate-reducing bacteria were enriched with benzene as sole organic substrate using marine sediment as inoculum. Repeated subcultivation yielded a sediment-free enrichment culture constituted of mostly oval-shaped cells and showing benzene-dependent sulfate reduction and growth under strictly anoxic conditions.

View Article and Find Full Text PDF

Strain HxN1, a member of the Betaproteobacteria, can grow anaerobically by denitrification with n-alkanes. n-Alkanes are apparently activated by subterminal carbon addition to fumarate yielding (1-methylalkyl)succinates, the postulated enzyme being (1-methylalkyl)succinate synthase (Mas). Genes encoding this enzyme (mas) were searched for via proteins that were specifically formed in n-hexane-grown cells (in comparison with caproate-grown cells), as revealed by two-dimensional gel electrophoresis.

View Article and Find Full Text PDF

The short-chain hydrocarbons ethane, propane and butane are constituents of natural gas. They are usually assumed to be of thermochemical origin, but biological formation of ethane and propane has been also observed. Microbial utilization of short-chain hydrocarbons has been shown in some aerobic species but not in anaerobic species of bacteria.

View Article and Find Full Text PDF

Anoxic sediment from a methane hydrate area (Hydrate Ridge, north-east Pacific; water depth 780 m) was incubated in a long-term laboratory experiment with semi-continuous supply of pressurized [1.4 MPa (14 atm)] methane and sulfate to attempt in vitro propagation of the indigenous consortia of archaea (ANME-2) and bacteria (DSS, Desulfosarcina/Desulfococcus cluster) to which anaerobic oxidation of methane (AOM) with sulfate has been attributed. During 24 months of incubation, the rate of AOM (measured as methane-dependent sulfide formation) increased from 20 to 230 micromol day(-1) (g sediment dry weight)(-1) and the number of aggregates (determined by microscopic counts) from 0.

View Article and Find Full Text PDF

Aerobic microbial degradation of pollutant oil (petroleum) in aquatic environments is often severely limited by the availability of combined nitrogen. We therefore studied whether the microbial community enriched in marine sediment microcosms with an added oil layer and exposure to light harboured nitrogenase activity. The acetylene reduction (AR) assay indeed indicated active nitrogenase; however, similar activity was observed in oil-free control microcosms.

View Article and Find Full Text PDF

Recent research on microbial degradation of aromatic and other refractory compounds in anoxic waters and soils has revealed that nitrate-reducing bacteria belonging to the Betaproteobacteria contribute substantially to this process. Here we present the first complete genome of a metabolically versatile representative, strain EbN1, which metabolizes various aromatic compounds, including hydrocarbons. A circular chromosome (4.

View Article and Find Full Text PDF

Anaerobic saccharolytic bacteria thriving at high pH values were studied in a cellulose-degrading enrichment culture originating from the alkaline lake, Verkhneye Beloye (Central Asia). In situ hybridization of the enrichment culture with 16S rRNA-targeted probes revealed that abundant, long, thin, rod-shaped cells were related to Cytophaga. Bacteria of this type were isolated with cellobiose and five isolates were characterized.

View Article and Find Full Text PDF

Corrosion of iron presents a serious economic problem. Whereas aerobic corrosion is a chemical process, anaerobic corrosion is frequently linked to the activity of sulphate-reducing bacteria (SRB). SRB are supposed to act upon iron primarily by produced hydrogen sulphide as a corrosive agent and by consumption of 'cathodic hydrogen' formed on iron in contact with water.

View Article and Find Full Text PDF