Publications by authors named "Wickline S"

Nanomedicine holds great potential for revolutionizing medical treatment. Ongoing research and advancements in nanotechnology are continuously expanding the possibilities, promising significant advancements in healthcare. To fully harness the potential of nanotechnology in medical applications, it is crucial to conduct safety evaluations for the nanomedicines that offer effective benefits in the preclinical stage.

View Article and Find Full Text PDF

Tumor angiogenesis and immunity show an inverse correlation in cancer progression and outcome. Here, we report that ZBTB46, a repressive transcription factor and a widely accepted marker for classical dendritic cells (DCs), controls both tumor angiogenesis and immunity. Zbtb46 was downregulated in both DCs and endothelial cells by tumor-derived factors to facilitate robust tumor growth.

View Article and Find Full Text PDF

Background: Oxidative stress is implicated in the pathogenesis and progression of abdominal aortic aneurysm (AAA). Antioxidant delivery as a therapeutic for AAA is of substantial interest although clinical translation of antioxidant therapy has met with significant challenges due to limitations in achieving sufficient antioxidant levels at the site of AAA. We posit that nanoparticle-based approaches hold promise to overcome challenges associated with systemic administration of antioxidants.

View Article and Find Full Text PDF

The progress of incorporating deep learning in the field of medical image interpretation has been greatly hindered due to the tremendous cost and time associated with generating ground truth for supervised machine learning, alongside concerns about the inconsistent quality of images acquired. Active learning offers a potential solution to these problems of expanding dataset ground truth by algorithmically choosing the most informative samples for ground truth labeling. Still, this effort incurs the costs of human labeling, which needs minimization.

View Article and Find Full Text PDF

Peptide-based nanoparticles (PBN) for nucleotide complexation and targeting of extrahepatic diseases are gaining recognition as potent pharmaceutical vehicles for fine-tuned control of protein production (up- and/or down-regulation) and for gene delivery. Herein, we review the principles and mechanisms underpinning self-assembled formation of PBN, cellular uptake, endosomal release, and delivery to extrahepatic disease sites after systemic administration. Selected examples of PBN that have demonstrated recent proof of concept in disease models in vivo are summarized to offer the reader a comparative view of the field and the possibilities for clinical application.

View Article and Find Full Text PDF

Myocardial ischemia reperfusion injury (IRI) in acute coronary syndromes is a condition in which ischemic/hypoxic injury to cells subtended by the occluded vessel continues despite successful resolution of the thrombotic obstruction. For decades, most efforts to attenuate IRI have focused on interdicting singular molecular targets or pathways, but none have successfully transitioned to clinical use. In this work, we investigate a nanoparticle-based therapeutic strategy for profound but local thrombin inhibition that may simultaneously mitigate both thrombosis and inflammatory signaling pathways to limit myocardial IRI.

View Article and Find Full Text PDF

For nearly five decades, cisplatin has played an important role as a standard chemotherapeutic agent and been prescribed to 10-20% of all cancer patients. Although nephrotoxicity associated with platinum-based agents is well recognized, treatment of cisplatin-induced acute kidney injury is mainly supportive and no specific mechanism-based prophylactic approach is available to date. Here, we postulated that systemically delivered rapamycin perfluorocarbon nanoparticles (PFC NP) could reach the injured kidneys at sufficient and sustained concentrations to mitigate cisplatin-induced acute kidney injury and preserve renal function.

View Article and Find Full Text PDF

Abdominal aortic aneurysm (AAA) is a progressive vascular condition associated with high risk of mortality if left untreated. AAA is an inflammatory process with excessive local production of extracellular matrix degrading enzymes, leading to dilatation and rupture of the abdominal aorta. We posit that targeting NF-κB, a signaling pathway that controls inflammation, will halt AAA progression and prevent rupture.

View Article and Find Full Text PDF

Cancer treatment-induced toxicities may restrict maximal effective dosing for treatment and cancer survivors' quality of life. It is critical to develop novel strategies that mitigate treatment-induced toxicity without affecting the efficacy of anti-cancer therapies. Rapamycin is a macrolide with anti-cancer properties, but its clinical application has been hindered, partly by unfavorable bioavailability, pharmacokinetics, and side effects.

View Article and Find Full Text PDF

NADPH oxidase (NOX)-derived reactive oxygen species (ROS) are implicated in the pathophysiology of hypertension in chronic kidney disease patients. Genetic deletion of NOX activator 1 () subunit of NOX1 decreases ROS under pathophysiological conditions. Here, we investigated the role of NOXA1-dependent NOX1 activity in the pathogenesis of angiotensin II (Ang II)-induced hypertension (AIH) and possible involvement of abnormal renal function.

View Article and Find Full Text PDF

Acute kidney injury (AKI) management remains mainly supportive as no specific therapeutic agents directed at singular signaling pathways have succeeded in clinical trials. Here, we report that inhibition of thrombin-driven clotting and inflammatory signaling with use of locally-acting thrombin-targeted perfluorocarbon nanoparticles (PFC NP) protects renal vasculature and broadly modulates diverse inflammatory processes that cause renal ischemia reperfusion injury. Each PFC NP was complexed with ~13,650 copies of the direct thrombin inhibitor, PPACK (proline-phenylalanine-arginine-chloromethyl-ketone).

View Article and Find Full Text PDF

Adult T-cell leukemia/lymphoma (ATLL) is an aggressive, clonal malignancy of mature T cells caused by human T-cell leukemia virus type 1. Although it is a rare tumor type, it serves as an excellent model of a virus driven process that transforms cells and engenders a highly malignant tumor that is extraordinarily difficult to treat. The viral transcriptional transactivator (Tax) in the HTLV-1 genome directly promotes tumorigenesis, and Tax-induced oncogenesis depends on its ability to constitutively activate NF-κB signaling.

View Article and Find Full Text PDF

Objective: Recent evidence delineates an emerging role of periostin in osteoarthritis (OA), since its expression after knee injury is detrimental to the articular cartilage. We undertook this study to examine whether intraarticular (IA) knockdown of periostin would ameliorate posttraumatic OA in a murine model.

Methods: Posttraumatic OA was induced in 10-week-old male C57BL/6J mice (n = 24) by destabilization of the medial meniscus (DMM), and mice were analyzed 8 weeks after surgery.

View Article and Find Full Text PDF

The cross-talk between angiogenesis and immunity within the tumor microenvironment (TME) is critical for tumor prognosis. While pro-angiogenic and immunosuppressive TME promote tumor growth, anti-angiogenic and immune stimulatory TME inhibit tumor progression. Therefore, there is a great interest in achieving vascular normalization to improve drug delivery and enhance antitumor immunity.

View Article and Find Full Text PDF

Cardiovascular disease is the leading cause of death and disability worldwide. Effective delivery of cell-selective therapies that target atherosclerotic plaques and neointimal growth while sparing the endothelium remains the Achilles heel of percutaneous interventions. The current study utilizes synthetic microRNA switch therapy that self-assembles to form a compacted, nuclease-resistant nanoparticle <200 nM in size when mixed with cationic amphipathic cell-penetrating peptide (p5RHH).

View Article and Find Full Text PDF

Fluorinated compounds feature favorable toxicity profile and can be used as a contrast agent for magnetic resonance imaging and spectroscopy. Fluorine nucleus from fluorinated compounds exhibit well-known advantages of being a high signal nucleus with a natural abundance of its stable isotope, a convenient gyromagnetic ratio close to that of protons, and a unique spectral signature with no detectable background at clinical field strengths. Perfluorocarbon core nanoparticles (PFC NP) are a class of clinically approved emulsion agents recently applied in vivo for ligand-targeted molecular imaging.

View Article and Find Full Text PDF

Background: Although novel therapeutic regimens for melanoma continue to emerge, the best current clinical response rate is still less than 60%. Moreover, antimelanoma treatments contribute to toxicities in other vital organs. In this study, we elucidate the therapeutic advantages of siRNA targeting melanoma NF-κB canonical signaling pathway with a peptide-based gene delivery nanoplex system.

View Article and Find Full Text PDF

Necrotizing enterocolitis (NEC) is an inflammatory bowel necrosis of premature infants and an orphan disease with no specific treatment. Most patients with confirmed NEC develop moderate-severe thrombocytopenia requiring one or more platelet transfusions. Here we used our neonatal murine model of NEC-related thrombocytopenia to investigate mechanisms of platelet depletion associated with this disease [K.

View Article and Find Full Text PDF

We previously established that global deletion of the enhancer of trithorax and polycomb (ETP) gene, Asxl2, prevents weight gain. Because proinflammatory macrophages recruited to adipose tissue are central to the metabolic complications of obesity, we explored the role of ASXL2 in myeloid lineage cells. Unexpectedly, mice without Asxl2 only in myeloid cells (Asxl2ΔLysM) were completely resistant to diet-induced weight gain and metabolically normal despite increased food intake, comparable activity, and equivalent fecal fat.

View Article and Find Full Text PDF

Thrombin, a major protein involved in the clotting cascade by the conversion of inactive fibrinogen to fibrin, plays a crucial role in the development of thrombosis. Antithrombin nanoparticles enable site-specific anticoagulation without increasing bleeding risk. Here we outline the process of making and the characterization of bivalirudin and D-phenylalanyl-L-prolyl-L-arginyl-chloromethyl ketone (PPACK) nanoparticles.

View Article and Find Full Text PDF

Osteoarthritis (OA) is a progressive joint disease that causes significant disability and pain and for which there are limited treatment options. We posit that delivery of anabolic factors that protect and maintain cartilage homeostasis will halt or retard OA progression. We employ a peptide-based nanoplatform to deliver Wingless and the name Int-1 (WNT) 16 messenger RNA (mRNA) to human cartilage explants.

View Article and Find Full Text PDF

Inflammation after joint injury leads to joint responses that result in eventual osteoarthritis development. Blockade of inflammation, by suppressing NF-κB expression, has been shown to reduce joint injury-induced chondrocyte apoptosis and reactive synovitis . Herein, we demonstrate that the suppression of NF-κB p65 expression also significantly mitigates the acute pain sensitivity induced by mechanical injury to the joint.

View Article and Find Full Text PDF

Over 95% of pancreatic adenocarcinomas (PDACs), as well as a large fraction of other tumor types, such as colorectal adenocarcinoma, are driven by KRAS activation. However, no direct RAS inhibitors exist for cancer therapy. Furthermore, the delivery of therapeutic agents of any kind to PDAC in particular has been hindered by the extensive desmoplasia and resultant drug delivery challenges that accompanies these tumors.

View Article and Find Full Text PDF

Background: Metabolic syndrome, an obesity-related condition associated with insulin resistance and low-grade inflammation, leads to diabetes, cardiovascular diseases, cancer, osteoarthritis, and other disorders. Optimal therapy is unknown. The antimalarial drug chloroquine activates the kinase ataxia telangiectasia mutated (ATM), improves metabolic syndrome and reduces atherosclerosis in mice.

View Article and Find Full Text PDF

Necrotizing enterocolitis (NEC) is an idiopathic, inflammatory bowel necrosis of premature infants. Clinical studies have linked NEC with antecedent red blood cell (RBC) transfusions, but the underlying mechanisms are unclear. Here we report a neonatal murine model to investigate this association.

View Article and Find Full Text PDF