Striking morphological transformations characterize the invasion of a red blood cell by the malaria parasite. Shortly after the infection, parasite-induced membranes appear in the cytosol of the affected host erythrocyte. One intensely investigated membrane type, commonly called Maurer's clefts, has a slit-like morphology and can be arranged in the form of extended three-dimensional membrane stacks or networks.
View Article and Find Full Text PDFObjectives: To determine the diagnostic accuracy, technical benefit, and clinical application of the duplex reverse transcription-PCR (duplex RT-PCR) assay specific to bradyzoite (BAG1) and tachyzoite (SAG1) genes, for diagnosing toxoplasmic encephalitis (TE) in HIV-infected patients, using the US Centers for Disease Control and Prevention (CDC) recommended diagnostic criteria as the reference standard.
Methods: Advanced HIV-infected individuals with central nervous system opportunistic infections were enrolled in a prospective study, performed from July 2007 to January 2009; patients were classified as TE- or non-TE subjects in accordance with the CDC recommended criteria. Blood and cerebrospinal fluid samples were assayed by duplex RT-PCR to detect tachyzoite, bradyzoite, both, or none.
Toxoplasmic encephalitis (TE) is caused by reactivation of dormant bradyzoites into rapidly dividing tachyzoites of the apicomplexan parasite Toxoplasma gondii in immune-compromised hosts. Diagnosis of this life-threatening disease is complicated, since it is difficult to distinguish between these two stages. It is, therefore, mainly based on a test positive for T.
View Article and Find Full Text PDFTrends Parasitol
October 2007
Over 100 years ago, Georg Maurer wrote one of the finest scientific accounts of what is now known as Maurer's dots, or clefts, describing the intracellular changes in red blood cells infected with Plasmodium falciparum. Maurer's clefts have since attracted much attention, and they form an intriguing aspect of parasite biology that may hold the key to the mechanisms by which the intracellular parasite alters red blood cell properties, leading to host pathogenesis and death. This review will focus on the description of the morphology of these clefts, from the first light-microscopic report up to recent three-dimensional reconstructions.
View Article and Find Full Text PDFObjectives: Models for the development of new treatment options in vestibular schwannoma (VS) treatment are lacking. The purpose of this study is to establish a quantifiable human VS xenograft model in mice.
Study Design And Methods: Both rat malignant schwannoma cells (KE-F11 and RT4) and human malignant schwannoma (HMS-97) cells were implanted near the sciatic nerve in the thigh of severe combined immunodeficiency (SCID) mice.
Southeast Asian J Trop Med Public Health
November 2005
Toxoplasmosis, caused by Toxoplasma gondii, is an important parasitic disease worldwide. Different techniques have been developed for T. gondii detection.
View Article and Find Full Text PDFA malaria survey of the entire population of a village in Western Burkina Faso (n=1,561) was conducted to assess malaria endemicity. The study population was examined for symptoms characteristic of malaria including fever, anaemia, splenomegaly and parasites present in thick blood films. In the overall study population, the prevalence of Plasmodium spp.
View Article and Find Full Text PDFDiscovered in 1902 by Georg Maurer as a peculiar dotted staining pattern observable by light microscopy in the cytoplasm of erythrocytes infected with the human malarial parasite Plasmodium falciparum, the function of Maurer's clefts have remained obscure for more than a century. The growing interest in protein sorting and trafficking processes in malarial parasites has recently aroused the Maurer's clefts from their deep slumber. Mounting evidence suggests that Maurer's clefts are a secretory organelle, which the parasite establishes within its host erythrocyte, but outside its own confines, to route parasite proteins across the host cell cytoplasm to the erythrocyte surface where they play a role in nutrient uptake and immune evasion processes.
View Article and Find Full Text PDFThe aim of the study was to assess whether infections with Plasmodium falciparum isolates encoding the P. falciparum chloroquine resistance transporter (pfcrt) gene K76T polymorphism, a molecular marker for chloroquine resistance, are associated with multiple infections, age, or clinical signs of malaria in a semi-immune population in a holoendemic area of Burkina Faso. The parameters of interest were investigated in 210 P.
View Article and Find Full Text PDFMaurer's clefts are single-membrane-limited structures in the cytoplasm of erythrocytes infected with the human malarial parasite Plasmodium falciparum. The currently accepted model suggests that Maurer's clefts act as an intermediate compartment in protein transport processes from the parasite across the cytoplasm of the host cell to the erythrocyte surface, by receiving and delivering protein cargo packed in vesicles. This model is mainly based on two observations.
View Article and Find Full Text PDFDuring intra-erythrocytic development, the human malarial parasite Plasmodium falciparum extensively remodels its adopted cellular home by exporting proteins beyond the confines of its own plasma membrane, but is, however, faced with a major problem: the lack of an endogenous protein trafficking machinery within the host erythrocyte. Thus, in order to export proteins the parasite has to install its own protein export system within the host erythrocyte. A growing body of evidence suggests that Maurer's clefts, parasite-derived membranous structures in the cytosol of the host cell, are a crucial component of this protein sorting and trafficking machinery.
View Article and Find Full Text PDFThe human malarial parasite Plasmodium falciparum exports virulence determinants, such as the P. falciparum erythrocyte membrane protein 1 (PfEMP1), beyond its own periplasmatic boundaries to the surface of its host erythrocyte. This is remarkable given that erythrocytes lack a secretory pathway.
View Article and Find Full Text PDFProtection against maternal malaria has been associated with the acquisition of a specific antibody response that prevents adhesion of Plasmodium falciparum-infected erythrocytes to the glycosaminoglycan chondroitin-4-sulphate (CSA), which is present in the placental intervillous space. These antibodies are directed against variant forms of the P. falciparum erythrocyte membrane protein 1 (PfEMP1) that mediate binding to CSA.
View Article and Find Full Text PDFThe paucity of human cell lines expressing defined receptors for the cytoadhesion of erythrocytes infected with the human malarial parasite Plasmodium falciparumhas hampered the investigation of this important virulence property. Here, we investigate a permanent cell line derived from a human, malignant schwannoma, termed HMS-97, and show that this cell line expresses chondroitin-4-sulfate as the only surface receptor to which P. falciparum-infected erythrocytes can cytoadhere.
View Article and Find Full Text PDFOncogenic osteomalacia is a rare paraneoplastic syndrome that is characterized biochemically by hypophosphatemia and low plasma 1,25-dihydroxyvitamin D3, and clinically by osteomalacia, pseudofractures, bone pain, fatigue, and muscle weakness. We present a patient with a malignant schwannoma as the underlying cause of this disorder. A permanent cell line (HMS-97) derived from this tumor showed evidence of neuroendocrine differentiation by immunohistochemistry and of neurosecretory activity by electron microscopy.
View Article and Find Full Text PDFUsing site-directed mutagenesis, we have introduced a serine-485-to-alanine mutation in the opossum parathyroid hormone (PTH) receptor. This amino acid is considered to be phosphorylated by protein kinase A upon ligand binding. Both wild-type (WT) and mutant receptor were stably expressed in 293-EBNA HEK cells.
View Article and Find Full Text PDFBackground/aims: Ultraviolet (UV) irradiation of mammalian cells in culture evokes the transcriptional activation of different proto-oncogenes, among them members of the fos/jun family which are known to play an important role in cell proliferation and differentiation. To investigate in vivo UV induced proto-oncogene expression of irradiated ocular cells, the expression of JunB, JunD, and Egr-1 was analysed in the cornea, lens, and retina. Furthermore, UV radiation is known to induce pleiotrophic events in irradiated cells which include growth arrest, inflammation, and even cell death.
View Article and Find Full Text PDFNumerous studies have demonstrated a prolonged expression of c-Jun transcription factor in neurons following axotomy, and it has been hypothesized that c-Jun may be causally involved in neuroregeneration in vivo. By contrast, there is growing evidence from in vitro studies that induction of c-Jun may be necessary for neuronal cell death induced by growth factor starvation. It has been demonstrated that protein levels of cell death repressor Bcl-2 and cell death promotor Bax determine the threshold for neuronal cell death and that their expression is dynamically modulated at the onset of neurodegeneration.
View Article and Find Full Text PDFAdministration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to mammals causes damage to the nigrostriatal pathway similar to that observed in Parkinson's disease. In the present study, we have investigated alterations in cell death effector gene expression induced by the neurotoxin MPTP in mouse substantia nigra. Intraperitoneal MPTP injections in mice resulted in a significant increase in bax mRNA by about two- and three-fold after 3 and 6 days, respectively.
View Article and Find Full Text PDFExpression of the c-Fos and c-Jun transcription factor was investigated by immunocytochemistry in the thalamus, hypothalamus, hippocampus and cortex of adult rats following intraperitoneal application of proconvulsant doses of the pyrethroid insecticides, cypermethrin and permethrin. Pyrethroid insecticides are used world-wide and their uptake, e.g.
View Article and Find Full Text PDFPurkinje cell degeneration (pcd) is an autosomal recessive mutation in the mouse characterized by an almost complete loss of cerebellar Purkinje neurons between postnatal days 22 and 28. The pcd gene has not been identified, however, a relationship between activation of specific genes and cell death has been suggested in other models of neuronal cell death. In the present study we analyzed the expression of several candidate cell death effector genes (bax, c-fos, junB, krox-24) and a cell death repressor gene (bcl-2) in the cerebellum of pcd homozygotes and wild-type mice.
View Article and Find Full Text PDFSystemic administration of kainate induces cell death in vulnerable regions of the rodent brain. Neuronal degeneration is associated with internucleosomal DNA fragmentation and induction of presumptive cell death effector genes (e.g.
View Article and Find Full Text PDFBcl-2 and Bax have recently been identified as putative repressor and effector proteins respectively, in the cell death program of growth factor-deprived haematopoietic cell lines. Overexpression of bcl-2 in neuronal cell culture prevents apoptosis induced by removal of neurotrophic factors. In the present in vivo study the expression of bcl-2 and bax mRNA has been investigated in dorsal root ganglia of young and adult rats using polymerase chain reaction.
View Article and Find Full Text PDF