Publications by authors named "Wichien Sang-Aroon"

The modulation of the photophysical properties of di-substituted porphyrin rings upon the oxygen and sulfur-for-nitrogen replacement has been investigated at density functional theory (DFT) and its time-dependent formulation (TDDFT). The considered properties range from structural behaviors and excitation energies to spin-orbit coupling (SOC) and nonradiative intersystem kinetic constants. Results show that the SOC strongly increase upon chalcogen substitution and, accordingly, the computed nonradiative kinetic constant also indicate an efficient singlet-triplet intersystem crossing in the sulfur containing macrocycle.

View Article and Find Full Text PDF

Context: Isoniazid (INH) is one of the medications most used for tuberculosis (TB) treatment. However, long-term continuous therapy can cause hepatotoxicity and peripheral neuritis. The degradation of INH is an important aspect of the research in the field of drug stability as well as drug formulation for controlling release.

View Article and Find Full Text PDF

Catalytic conversion of methane to methanol is one of the most promising processes for effective natural gas resource utilization. In this work, BiO-catalyzed oxidation of methane to methanol with NO as an oxidizing reactant has been investigated by DFT calculation. For the overall reaction mechanism of three NO molecules on BiO catalyst, two catalytic cycles were proposed.

View Article and Find Full Text PDF
Article Synopsis
  • βAsp isomerizes from Asp and can affect protein stability and play a role in various diseases like aging, cancer, and neurodegenerative disorders.
  • Methods to detect βAsp are complex due to its identical mass with Asp, making differentiation challenging.
  • Computational studies reveal that the cleavage mechanisms involving βAsp are energetically favorable for the α-chain, while conversion back to Asp from βAsp under nonenzymatic conditions is unlikely without the enzyme PIMT.
View Article and Find Full Text PDF

Density functional theory is herein employed to provide theoretical insight into the mechanism involved in 1O2 photosensitization by a gold-BODIPY combined complex proposed as a promising photodynamic therapy agent. The protocol is thus used to compute the non-radiative rate constants for the S1 → Tj intersystem crossing transitions. Calculations show that while the incorporation of an iodine atom into the core skeleton of BODIPY enhances the singlet-triplet intersystem crossing (ISC) efficiency due to the occurrence of the singlet-triplet transition between states with different orbital characters (ππ* → πn*), the presence of a gold atom, even if not directly anchored to the chromophore core but through a triplet bond, equally entails an increase of the spin-orbit coupling constant due to the heavy atom effect.

View Article and Find Full Text PDF

The EtOAc and MeOH extracts of the roots of Toddalia asiatica Lam. were investigated for the roots' chemical constituents. Two new compounds including 2'R-acetoxytoddanol (1) and 8S-10-O-demethylbocconoline (3) as well as 15 known compounds were isolated.

View Article and Find Full Text PDF

The gas-phase geometry optimizations of bare, mono- and dihydrated complexes of temozolomide isomers were carried out using density functional calculation at the M06-2X/6-31+G(d,p) level of the theory. The structures and protonation energies of protonated species of temozolomide are reported. Chemical indices of all isomers and protonated species are also reported.

View Article and Find Full Text PDF

Mangosteen peel is an inedible portion of a fruit. We are interested in using these residues as components of a dye sensitized solar cell (DSSC). Carbonized mangosteen peel was used with mangosteen peel dye as a natural counter electrode and a natural photosensitizer, respectively.

View Article and Find Full Text PDF

In this work, peptide bond cleavages at carboxy- and amino-sides of the aspartic residue in a peptide model via direct (concerted and step-wise) and cyclic intermediate hydrolysis reaction pathways were explored computationally. The energetics, thermodynamic properties, rate constants, and equilibrium constants of all hydrolysis reactions, as well as their energy profiles were computed at the B3LYP/6-311++G(d,p) level of theory. The result indicated that peptide bond cleavage of the Asp residue occurred most preferentially via the cyclic intermediate hydrolysis pathway.

View Article and Find Full Text PDF

Isomerization and peptide bond cleavage at aspartic residue (Asp) in peptide models have been reported. In this study, the mechanisms and energies concerning the isomerization and peptide bond cleavage at Asp residue were investigated by the density functional theory (DFT) at B3LYP/6-311++G(d,p). The integral equation formalism-polarizable continuum model (IEF-PCM) was utilized to calculate solvation effect by single-point calculation of the gas-phase B3LYP/6-311++G(d,p)-optimized structure.

View Article and Find Full Text PDF

Essential parameters related to the photoelectrochemical properties, such as ground state geometries, electronic structures, oxidation potential and electron driving force, of cochineal insect dyes were investigated by DFT and TDDFT at the B3LYP/6-31+G(d,p) level of the theory. The results show that the major charge flow dynamic for all dyes is the HOMO→LUMO transition. The bi-coordinated binding mode, in which the dye uses one carboxyl- and hydroxyl oxygen bound to Ti(IV), is found for all dye-TiO(2) systems.

View Article and Find Full Text PDF

Gas-phase geometry-optimized structures of aspartate complexes of anionic species (Hasp(-)) with lithium, sodium and potassium metal cations and transition-state structures for their interconversions were obtained using the density functional theory computations at the B3LYP/6-311++G(d,p) level of theory. The metal ion affinities of Hasp(-) species and deprotonation energies of [Hasp-M] complexes, M=Li+, Na+ and K+, and their conformers were obtained. Relative energies of the [Hasp-M] complex conformers, reaction energies, thermodynamic properties, rate and equilibrium constants of their complexation are reported.

View Article and Find Full Text PDF

The gas-phase geometry optimizations of mono and dinuclear complexes of dianionic species of aspartic acid, asp(2-) with lithium, sodium and potassium cations were carried out using density functional calculation at the B3LYP/6-311++G(d,p) level. The metal ion affinities (MIAs) of asp(2-) species and its complexes [asp-M](-), M=Li(+), Na(+) and K(+) were determined using the vibrational frequency calculations at the same level of theory. The most stable complex conformer for aspartate complexes with Li(+), Na(+) and K(+) alkali cations were found as a tri-coordinated form.

View Article and Find Full Text PDF