Publications by authors named "Wible C"

The opacity of conventional ultrasound transducers can impede the miniaturization and workflow of current photoacoustic systems. In particular, optical-resolution photoacoustic microscopy (OR-PAM) requires the coaxial alignment of optical illumination and acoustic-detection paths through complex beam combiners and a thick coupling medium. To overcome these hurdles, we developed a novel OR-PAM method on the basis of our recently reported transparent lithium niobate (LiNbO) ultrasound transducer (Dangi et al.

View Article and Find Full Text PDF

Background: Schizophrenia (SZ) is a severe neuropsychiatric disorder associated with disrupted connectivity within the thalamic-cortico-cerebellar network. Resting-state functional connectivity studies have reported thalamic hypoconnectivity with the cerebellum and prefrontal cortex as well as thalamic hyperconnectivity with sensory cortical regions in SZ patients compared with healthy comparison participants (HCs). However, fundamental questions remain regarding the clinical significance of these connectivity abnormalities.

View Article and Find Full Text PDF

Background: The negative symptoms of schizophrenia include deficits in emotional expression and motivation. These deficits are stable over the course of illness and respond poorly to current medications. Previous studies have focused on negative symptoms as a single category; however, individual symptoms might be related to separate neurological disturbances.

View Article and Find Full Text PDF

The Function Biomedical Informatics Research Network (FBIRN) developed methods and tools for conducting multi-scanner functional magnetic resonance imaging (fMRI) studies. Method and tool development were based on two major goals: 1) to assess the major sources of variation in fMRI studies conducted across scanners, including instrumentation, acquisition protocols, challenge tasks, and analysis methods, and 2) to provide a distributed network infrastructure and an associated federated database to host and query large, multi-site, fMRI and clinical data sets. In the process of achieving these goals the FBIRN test bed generated several multi-scanner brain imaging data sets to be shared with the wider scientific community via the BIRN Data Repository (BDR).

View Article and Find Full Text PDF

The amplitude of low-frequency fluctuations (ALFF) in the blood oxygenation level-dependent (BOLD) signal during resting-state fMRI reflects the magnitude of local low-frequency BOLD oscillations, rather than interregional connectivity. ALFF is of interest to studies of cognition because fluctuations in spontaneous intrinsic brain activity relate to, and possibly even constrain, task-evoked brain responses in healthy people. Lower ALFF has been reported in schizophrenia, but the cognitive correlates of these reductions remain unknown.

View Article and Find Full Text PDF

The content, modality, and perceptual attributes of hallucinations and other psychotic symptoms may be related to neural representation at a single cell and population level in the cerebral cortex. A brief survey of some principles and examples of cortical representation and organization will be presented together with evidence for a correspondence between the neurobiology of brain areas activated at the time of a hallucination and the content of the corresponding hallucinatory and psychotic experiences. Contrasting the hallucinations of schizophrenia with other conditions, we highlight phenomenological aspects of hallucinations that are ignored in clinical practice but carry potentially important information about the brain regions and dysfunctions underlying them.

View Article and Find Full Text PDF

Memory impairment is a consistent feature of the schizophrenic syndrome. Hippocampal dysfunction has also been consistently demonstrated. This review will discuss neurophysiological and neuroanatomical aspects of memory formation and how they relate to memory impairment in schizophrenia.

View Article and Find Full Text PDF

When using functional brain imaging to study neuropsychiatric patients an important challenge is determining whether the imaging task assesses individual differences with equal precision in healthy control and impaired patient groups. Classical test theory (CTT) requires separate reliability studies of patients and controls to determine equivalent measurement precision with additional studies to determine measurement precision for different levels of disease severity. Unlike CTT, item response theory (IRT) provides estimates of measurement error for different levels of ability, without the need for separate studies, and can determine if different tests are equivalently difficult when investigating differential deficits between groups.

View Article and Find Full Text PDF

Evidence is reviewed for the existence of a core system for moment-to-moment social communication that is based on the perception of dynamic gestures and other social perceptual processes in the temporal-parietal occipital junction (TPJ), including the posterior superior temporal sulcus (PSTS) and surrounding regions. Overactivation of these regions may produce the schizophrenic syndrome. The TPJ plays a key role in the perception and production of dynamic social, emotional, and attentional gestures for the self and others.

View Article and Find Full Text PDF

A framework is described for understanding the schizophrenic syndrome at the brain systems level. It is hypothesized that over-activation of dynamic gesture and social perceptual processes in the temporal-parietal occipital junction (TPJ), posterior superior temporal sulcus (PSTS) and surrounding regions produce the syndrome (including positive and negative symptoms, their prevalence, prodromal signs, and cognitive deficits). Hippocampal system hyper-activity and atrophy have been consistently found in schizophrenia.

View Article and Find Full Text PDF

This report provides practical recommendations for the design and execution of multicenter functional MRI (MC-fMRI) studies based on the collective experience of the Function Biomedical Informatics Research Network (FBIRN). The study was inspired by many requests from the fMRI community to FBIRN group members for advice on how to conduct MC-fMRI studies. The introduction briefly discusses the advantages and complexities of MC-fMRI studies.

View Article and Find Full Text PDF

A method was developed to quantify the effect of scanner instability on functional MRI data by comparing the instability noise to endogenous noise present when scanning a human. The instability noise was computed from agar phantom data collected with two flip angles, allowing for a separation of the instability from the background noise. This method was used on human data collected at four 3 T scanners, allowing the physiological noise level to be extracted from the data.

View Article and Find Full Text PDF

Investigators perform multi-site functional magnetic resonance imaging studies to increase statistical power, to enhance generalizability, and to improve the likelihood of sampling relevant subgroups. Yet undesired site variation in imaging methods could off-set these potential advantages. We used variance components analysis to investigate sources of variation in the blood oxygen level-dependent (BOLD) signal across four 3-T magnets in voxelwise and region-of-interest (ROI) analyses.

View Article and Find Full Text PDF

Disturbances in selective attention represent a core characteristic of schizophrenia, whose neural underpinnings have yet to be fully elucidated. Consequently, we recorded brain activation using functional magnetic resonance imaging (fMRI) while 15 patients with schizophrenia and 15 age-matched controls performed a well-established measure of selective attention-the color Stroop negative priming task. We focused on two aspects of performance: overriding pre-potent responses (Stroop effect) and inhibition of prior negatively primed trials (negative priming effect).

View Article and Find Full Text PDF

We will review converging evidence that language related symptoms of the schizophrenic syndrome such as auditory verbal hallucinations arise at least in part from processing abnormalities in posterior language regions. These language regions are either adjacent to or overlapping with regions in the (posterior) temporal cortex and temporo-parietal occipital junction that are part of a system for processing social cognition, emotion, and self representation or agency. The inferior parietal and posterior superior temporal regions contain multi-modal representational systems that may also provide rapid feedback and feed-forward activation to unimodal regions such as auditory cortex.

View Article and Find Full Text PDF

The use of fMRI and other neuroimaging techniques in the study of cognitive language processes in psychiatric and non-psychiatric conditions has led at times to discrepant findings. Many issues complicate the study of language, especially in psychiatric populations. For example, the use of subtractive designs can produce misleading results.

View Article and Find Full Text PDF

Functional studies in schizophrenia demonstrate prominent abnormalities within the left inferior frontal gyrus (IFG) and also suggest the functional connectivity abnormalities in language network including left IFG and superior temporal gyrus during semantic processing. White matter connections between regions involved in the semantic network have also been indicated in schizophrenia. However, an association between functional and anatomical connectivity disruptions within the semantic network in schizophrenia has not been established.

View Article and Find Full Text PDF

Deficits in working memory (WM) are a consistent neurocognitive marker for schizophrenia. Previous studies have suggested that WM is the product of coordinated activity in distributed functionally connected brain regions. Independent component analysis (ICA) is a data-driven approach that can identify temporally coherent networks that underlie fMRI activity.

View Article and Find Full Text PDF

There has been evidence for functional abnormalities of the verbal working memory system in schizophrenia. Verbal working memory crucially involves the interplay between the anterior and posterior language systems, and previous studies have shown converging evidence for abnormalities in the posterior language system in schizophrenia. In this functional magnetic resonance imaging study, we measured cortical activity in chronic schizophrenic patients and matched healthy controls during auditory and visual verbal working memory tasks.

View Article and Find Full Text PDF

Deficits in the connectivity between brain regions have been suggested to play a major role in the pathophysiology of schizophrenia. A functional magnetic resonance imaging (fMRI) analysis of schizophrenia was implemented using independent component analysis (ICA) to identify multiple temporally cohesive, spatially distributed regions of brain activity that represent functionally connected networks. We hypothesized that functional connectivity differences would be seen in auditory networks comprised of regions such as superior temporal gyrus as well as executive networks that consisted of frontal-parietal areas.

View Article and Find Full Text PDF

Background: The Functional Imaging Biomedical Informatics Network is a consortium developing methods for multisite functional imaging studies. Both prefrontal hyper- or hypoactivity in chronic schizophrenia have been found in previous studies of working memory.

Methods: In this functional magnetic resonance imaging (fMRI) study of working memory, 128 subjects with chronic schizophrenia and 128 age- and gender-matched controls were recruited from 10 universities around the United States.

View Article and Find Full Text PDF

Correlations of cognitive functioning with brain activation during a sternberg item recognition paradigm (SIRP) were investigated in patients with schizophrenia and in healthy controls studied at 8 sites. To measure memory scanning times, 4 response time models were fit to SIRP data. The best fitting model assumed exhaustive serial memory scanning followed by self-terminating memory search and involved one intercept parameter to represent SIRP processes not contributing directly to memory scanning.

View Article and Find Full Text PDF

Introduction: Auditory hallucinations are a hallmark symptom of schizophrenia. The neural basis of auditory hallucinations was examined using data from a working memory task. Data were acquired within a multisite consortium and this unique dataset provided the opportunity to analyze data from a large number of subjects who had been tested on the same procedures across sites.

View Article and Find Full Text PDF

Introduction: Auditory hallucinations or voices are experienced by 75% of people diagnosed with schizophrenia. We presumed that auditory cortex of schizophrenia patients who experience hallucinations is tonically "tuned" to internal auditory channels, at the cost of processing external sounds, both speech and nonspeech. Accordingly, we predicted that patients who hallucinate would show less auditory cortical activation to external acoustic stimuli than patients who did not.

View Article and Find Full Text PDF

Word-priming studies have suggested that the associative disturbance of schizophrenia may reflect aberrant spread of activation through the lexicon of the brain. To explore this, we examined lexical activation using a semantic word-priming paradigm coupled with functional magnetic resonance imaging (fMRI). We also wanted to determine whether brain activation to this paradigm correlated with relevant clinical symptom measures.

View Article and Find Full Text PDF