Publications by authors named "Wibke S U Roland"

A microtiter plate (MTP) method was developed to screen 1064 unique microorganisms-substrate fermentations for production of 68 target aroma compounds. Based on the number of hits identified by GC-MS, 50 fermentations were repeated at 50-mL scale in flasks. Comparison of GC-MS data showed that scaling up from MTP to flask did not generally result in large differences between the volatile profiles, even with a wide variety of substrates (juice, food slurry and food side-streams) and microorganisms (yeast, bacteria and fungi) used.

View Article and Find Full Text PDF

The growing interest in plant protein sources, such as pulses, is driven by the necessity for sustainable food production and climate change mitigation strategies. Faba bean (.) is a promising protein crop for temperate climates, owing to its remarkable yield potential (up to 8 tonnes ha in favourable growing conditions) and high protein content (~29% dry matter basis).

View Article and Find Full Text PDF

Novel pulsed electric field (PEF) process conditions at moderate electric field strength and long pulse duration have recently been established to obtain microbial inactivation. In this study, the effect of these PEF conditions ( = 0.9 and 2.

View Article and Find Full Text PDF

The human bitter taste receptor hTAS2R39 can be activated by many dietary (iso)flavonoids. Furthermore, hTAS2R39 activity can be blocked by 6-methoxyflavanones, 4'-fluoro-6-methoxyflavanone in particular. A structure-based pharmacophore model of the hTAS2R39 binding pocket was built using Snooker software, which has been used successfully before for drug design of GPCRs of the rhodopsin subfamily.

View Article and Find Full Text PDF

Many (dietary) bitter compounds, e.g. flavonoids, activate bitter receptor hTAS2R39 in cell-based assays.

View Article and Find Full Text PDF

Many flavonoids and isoflavonoids have an undesirable bitter taste, which hampers their use as food bioactives. The aim of this study was to investigate the effect of a large set of structurally similar (iso)flavonoids on the activation of bitter receptors hTAS2R14 and hTAS2R39 and to predict their structural requirements to activate these receptors. In total, 68 compounds activated hTAS2R14 and 70 compounds activated hTAS2R39, among which 58 ligands were overlapping.

View Article and Find Full Text PDF

Epigallocatechin gallate (EGCG) has been ascribed to several health benefits, but its bitter taste influences the liking of products with high concentrations of this compound. β-Casein, in particular, and several gelatins are known as strong binders of EGCG, contrary to β-lactoglobulin. The current study aimed at relating the EGCG-binding characteristics of those proteins and their food-grade equivalents to their effects on reducing bitter receptor activation by EGCG in vitro and their bitter-masking potential in vivo.

View Article and Find Full Text PDF

The aim of this study was to identify the bitter receptor(s) that recognize the bitter taste of the soy isoflavone genistein. Screening of all 25 human bitter receptors revealed genistein as agonist of hTAS2R14 and hTAS2R39. Genistein displayed threshold values of 4 and 8 μM on hTAS2R14 and hTAS2R39 and EC(50) values of 29 and 49 μM, respectively.

View Article and Find Full Text PDF