Publications by authors named "Wiberg F"

Background: GCA is a systemic vasculitis of the elderly, viewed by many as a disease with multiple and overlapping clinical phenotypes. Retrospective studies have shown differences in clinical presentation between these phenotypes. To reflect the heterogeneity of GCA and novel diagnostic methods, new classification criteria have been proposed.

View Article and Find Full Text PDF

Background: Coronary heart disease (CHD) is a multifactorial disease with both genetic and environmental components. Smoking is the most important modifiable risk factor for CHD. Our aim was to test whether the increased CHD incidence by smoking is modified by genetic predisposition to CHD.

View Article and Find Full Text PDF

Background: Open repair (OR) for popliteal artery aneurysm (PAA) has recently been challenged by endovascular repair (ER) as the primary choice of treatment. The aim of the present study was to evaluate time trends in treatment modality and compare outcomes between OR and ER among electively operated patients after start of screening in 2010 for abdominal aortic aneurysm (AAA), a disease highly associated with PAA.

Methods: Between January 1, 2009, and April 30, 2017, 102 procedures and 36 acute and 66 elective repairs for PAA were identified.

View Article and Find Full Text PDF

The beneficial effect of antibody therapy in human disease has become well established mainly for the treatment of cancer and immunological disorders. The inherent monospecificity of mAbs present limitations to mAb therapy which have become apparent notably in addressing complex entities like infectious agents or heterogenic endogenous targets. For such indications mixtures of antibodies comprising a combination of specificities would convey more potent biological effect which could translate into therapeutic efficacy.

View Article and Find Full Text PDF

We describe the expression and consistent production of a first target-specific recombinant human polyclonal antibody. An anti-Rhesus D recombinant polyclonal antibody, Sym001, comprised of 25 unique human IgG1 antibodies, was produced by the novel Sympress expression technology. This strategy is based on site-specific integration of antibody genes in CHO cells, using the FRT/Flp-In recombinase system.

View Article and Find Full Text PDF

Dipeptidyl peptidase IV (DPP-IV/CD26) is a multifunctional type II transmembrane serine peptidase. This enzyme contributes to the regulation of various physiological processes, including blood sugar homeostasis, by cleaving peptide hormones, chemokines and neuropeptides. We have determined the 2.

View Article and Find Full Text PDF

Purpose: This study was undertaken to test the hypothesis that topiramate (TPM) exerts a negative modulatory effect on some types of alpha-amino-3-hydroxy-5-methylisoxazole-4-proprionic acid (AMPA)/kainate receptors by binding to the site at which protein kinase A (PKA) phosphorylates the receptor-channel complex.

Methods: The effect of TPM on kainate- or domoate-induced [14C]guanidinium ion flux through iGluR6 channels expressed in baby hamster kidney (BHK) cells was evaluated. Because the hypothesis predicts that TPM will bind only in the dephosphorylated state, a variety of experimental conditions were used to either promote or impede the phosphorylation of the receptor-channel complex.

View Article and Find Full Text PDF

We have investigated the role of the C-terminal of the alpha-subunit in the insulin receptor family by characterizing chimeric mini-receptor constructs comprising the first three domains (468 amino acids) of insulin receptor (IR) or insulin-like growth factor I receptor (IGFIR) combined with C-terminal domain from either insulin receptor (IR) (residues 704-719), IGFIR, or insulin receptor-related receptor (IRRR). The constructs were stably expressed in baby hamster kidney cells and purified, and binding affinities were determined for insulin, IGFI, and a single chain insulin/IGFI hybrid. The C-terminal domain of IRRR was found to abolish binding in IR and IGFIR context, whereas other constructs bound ligands.

View Article and Find Full Text PDF

The three N-glycosylation sites of human heparin binding protein (HBP) have been mutated to produce a nonglycosylated HBP (ng-HBP) mutant. ng-HBP has been crystallized and tested for biological activity. Complete X-ray data have been collected to 2.

View Article and Find Full Text PDF

The first non-peptide competitive human glucagon receptor antagonist, 2-(benzimidazol-2-ylthio)-1-(3,4-dihydroxyphenyl)-1-ethan one, NNC 92-1687 (2), is described. This antagonist has a binding affinity of 20 microM (IC50) and a functional Ki = 9.1 microM at the human glucagon receptor.

View Article and Find Full Text PDF

Crystals of the monomeric and dimeric forms of human neutrophil gelatinase associated lipocalin have been grown in hanging-drop vapor-diffusion trials using PEG as a precipitating agent with recombinant protein expressed in a baculovirus-based system. Crystals of monomeric NGAL belong to the cubic space group P432 with lattice constants a = b = c = 126.6 A; crystals of dimeric NGAL belong to the tetragonal space group P41212 (or its enantiomorph P43212) with lattice constants a = b = 54.

View Article and Find Full Text PDF

In order to characterize regions of the insulin receptor that are essential for ligand binding and possibly identify a smaller insulin-binding fragment of the receptor, we have used site-directed mutagenesis to construct a series of insulin receptor deletion mutants. From 112 to 246 amino acids were deleted from the alpha-subunit region comprising amino acids 469-729. The receptor constructs were expressed as soluble insulin receptor IgG fusion proteins in baby hamster kidney cells and were characterized in binding assays by immunoblotting and chemical cross-linking with radiolabeled insulin.

View Article and Find Full Text PDF

Glucagon-like peptide 1 (GLP-1) has great potential in diabetes therapy due to its glucose-dependent stimulation of insulin secretion, but this is limited by its rapid degradation, primarily by dipeptidyl peptidase IV. Four analogues, N-terminally substituted with threonine, glycine, serine or alpha-aminoisobutyric acid, were synthesised and tested for metabolic stability. All were more resistant to dipeptidyl peptidase IV in porcine plasma in vitro, ranging from a t1/2 of 159 min (Gly8 analogue) to undetectable degradation after 6 h (Aib8 analogue; t1/2 for GLP-1 (7-36) amide, 28 min).

View Article and Find Full Text PDF

Alanine scanning mutagenesis has been used to identify specific side chains of insulin which strongly influence binding to the insulin receptor. A total of 21 new insulin analog constructs were made, and in addition 7 high pressure liquid chromatography-purified analogs were tested, covering alanine substitutions in positions B1, B2, B3, B4, B8, B9, B10, B11, B12, B13, B16, B17, B18, B20, B21, B22, B26, A4, A8, A9, A12, A13, A14, A15, A16, A17, A19, and A21. Binding data on the analogs revealed that the alanine mutations that were most disruptive for binding were at positions TyrA19, GlyB8, LeuB11, and GluB13, resulting in decreases in affinity of 1,000-, 33-, 14-, and 8-fold, respectively, relative to wild-type insulin.

View Article and Find Full Text PDF

The structures of three complexes of human fructose-1,6-bisphosphatase (FB) with the allosteric inhibitor AMP and two AMP analogues have been determined and all fully refined. The data used for structure determination were collected at cryogenic temperature (110 K), and with the use of synchrotron radiation. The structures reveal a common mode of binding for AMP and formycine monophosphate (FMP).

View Article and Find Full Text PDF

The structure of human heparin binding protein reveals that the serine proteinase fold has been used as a scaffold for a multifunctional protein with antibacterial activity, monocyte and t-cell activating properties and endotoxin and heparin binding capacity.

View Article and Find Full Text PDF

The highly glycosylated protein, human heparin binding protein, has been crystallized in the primitive orthorhombic space group P2(1)2(1)2(1) with cell dimensions a = 39.0, b = 66.2 and c = 101.

View Article and Find Full Text PDF

Neutrophil-derived heparin-binding protein (HBP) is a strong chemoattractant for monocytes. We report here for the first time the expression of recombinant HBP. A baculovirus containing the human HBP cDNA mediated in insect cells the secretion of a 7-residue N-terminally extended HBP form (pro-HBP).

View Article and Find Full Text PDF

The metabolic and mitogenic potencies of six different insulin analogues were determined by measuring glucose transport in primary adipocytes and DNA synthesis in CHO cells respectively. Three analogues showed a disproportionately high mitogenic potency compared with their metabolic potency, and were up to 7 times more mitogenically than metabolically potent when compared with human insulin. The mitogenic/metabolic potency ratio of the analogues was found to be inversely correlated with the insulin receptor dissociation rate constant (Kd) in an exponential fashion (r=0.

View Article and Find Full Text PDF

Binding of insulin to its receptor (IR) causes rapid autophosphorylation with concomitant activation of its tyrosine kinase which transmits the signal by phosphorylating cellular substrates. The IR activity is controlled by protein-tyrosine phosphatases, but those directly involved in regulating the insulin receptor and its signaling pathways have not yet been identified. Using baby hamster kidney cells overexpressing the IR and a novel insulin-based selection principle, we established stable cell lines with functionally coupled expression of the IR and protein-tyrosine phosphatases.

View Article and Find Full Text PDF

1. To investigate the structure/function relationship of the interaction between ligand and receptor in the insulin-like growth factor I (IGF-I) and insulin receptor systems we have prepared and characterized a single-chain insulin/IGF-I hybrid. The single-chain hybrid consists of the insulin molecule combined with the C domain of IGF-I.

View Article and Find Full Text PDF

The exact nature of how the insulin molecule interacts with the insulin receptor is obscure although chimeric receptors have shown that the ligand specificity of the insulin receptor and the IGF-I receptor (i.e. the sequences that discriminate between insulin and insulin-like growth factor I) reside in different regions of a common binding site and that the N-terminal 68 amino acids of the insulin receptor are involved in conferring specificity for insulin on this receptor (Kjeldsen, T.

View Article and Find Full Text PDF

We have examined, by use of a hybrid insulin/insulin-like growth factor-I analog and chimeric insulin/type I insulin-like growth factor receptors, the interplay between ligand and receptor structure in determining the affinity and specificity of hormone-receptor interactions in the insulin and insulin-like growth factor-I systems. Our findings, obtained through the study of radiolabeled peptide binding to detergent-solubilized full-length receptors and to soluble truncated receptors, show that (a) the two-chain hybrid analog exhibits significant cross-reactivity with both receptor systems, (b) the exchange of appropriate domains in chimeric receptors enhances the receptor binding affinity of the analog by 3.5-21-fold, and (c) the affinity of the hybrid analog for the chimeric receptors actually exceeds that of either natural insulin or natural insulin-like growth factor-I.

View Article and Find Full Text PDF

Previous studies have identified a putative calcium binding site involving two glutamic acid residues located in the protease domain of coagulation factor IX. Amino acid sequence homology considerations suggest that factor VII (FVII) possesses a similar site involving glutamic acid residues 210 and 220. In the present study, we have constructed site-specific mutants of human factor VII in which Glu-220 has been replaced with either a lysine (E220K FVII) or an alanine (E220A FVII).

View Article and Find Full Text PDF