Publications by authors named "Whittall R"

The development and use of light and lasers for medical and cosmetic procedures has increased exponentially over the past decade. This review article focuses on the incidence of reported cases of skin cancer post laser or IPL treatment. The existing evidence base of over 25 years of laser and IPL use to date has not raised any concerns regarding its long-term safety with only a few anecdotal cases of melanoma post treatment over two decades of use; therefore, there is no evidence to suggest that there is a credible cancer risk.

View Article and Find Full Text PDF

Background: Familial hypercholesterolaemia (FH) is usually caused by mutations in three genes (LDLR, APOB and PCSK9).

Objective: To identify the spectrum of FH-causing mutations in black South African (SA) patients.

Methods: DNA samples of 16 unrelated South African FH patients with elevated low-density lipoprotein cholesterol levels, tendon xanthomas and corneal arcus (3 clinically homozygous FH and 13 heterozygous FH) of ethnic African origin were screened for mutations in the LDLR (coding region, promoter and intron/exon boundaries), APOB (part of exon 26) and PCSK9 genes (exon 7), using high-resolution melting.

View Article and Find Full Text PDF

Background And Aims: Familial hypercholesterolemia (FH) is an autosomal dominant disease caused by mutations in the genes for LDL receptor (LDLR), apolipoprotein B (APOB) and proprotein convertase subtilisin/kexin type9 (PCSK9). The purpose of the current investigation was to define the current spectrum of mutations causing FH in Israel.

Methods: New families were collected through the MEDPED (Make Early Diagnosis Prevent Early Death) FH program.

View Article and Find Full Text PDF

Background: Familial hypercholesterolaemia (OMIM 143890) is most frequently caused by variations in the low-density lipoprotein receptor () gene. Predicting whether novel variants are pathogenic may not be straightforward, especially for missense and synonymous variants. In 2013, the Association of Clinical Genetic Scientists published guidelines for the classification of variants, with categories 1 and 2 representing clearly not or unlikely pathogenic, respectively, 3 representing variants of unknown significance (VUS), and 4 and 5 representing likely to be or clearly pathogenic, respectively.

View Article and Find Full Text PDF

Background: Familial hypercholesterolemia (FH) is a common autosomal dominant disorder with a frequency of 1 in 200 to 500 in most European populations. Mutations in LDLR, APOB and PCSK9 genes are known to cause FH. In this study, we analyzed the genetic spectrum of the disease in the understudied Polish population.

View Article and Find Full Text PDF

The treatment of acne vulgaris poses a challenge to the dermatologist, and the disease causes emotional anxiety for the patient. The treatment of acne vulgaris may be well-suited to home-use applications, where sufferers may be too embarrassed to seek medical treatment. This randomized controlled study is designed to quantify the effectiveness of using a blue light device in a therapy combined with proprietary creams, in the investigation of a self-treatment regimen.

View Article and Find Full Text PDF

Background: Familial hypercholesterolemia (FH) is an autosomal-dominant disorder caused by mutations in 1 of 3 genes. In the 60% of patients who are mutation negative, we have recently shown that the clinical phenotype can be associated with an accumulation of common small-effect LDL cholesterol (LDL-C)-raising alleles by use of a 12-single nucleotide polymorphism (12-SNP) score. The aims of the study were to improve the selection of SNPs and replicate the results in additional samples.

View Article and Find Full Text PDF

Background: Familial hypercholesterolaemia (FH) is an autosomal dominant disease of lipid metabolism, which leads to early coronary heart disease. Mutations in LDLR, APOB and PCSK9 can be detected in 80% of definite FH (DFH) patients. This study aimed to identify novel FH-causing genetic variants in patients with no detectable mutation.

View Article and Find Full Text PDF

Aim: To determine the frequency and spectrum of mutations causing Familial Hypercholesterolaemia (FH) in patients attending a single UK specialist hospital lipid clinic in Oxford and to identify characteristics contributing to a high mutation detection rate.

Methods: 289 patients (272 probands) were screened sequentially over a 2-year period for mutations in LDLR, APOB and PCSK9 using standard molecular genetic techniques. The Simon Broome (SB) clinical diagnostic criteria were used to classify patients and a separate cohort of 409 FH patients was used for replication.

View Article and Find Full Text PDF

Background: Familial hypercholesterolemia (FH) is an autosomal dominant disease caused by mutations in the genes coding for the low density lipoprotein receptor (LDLR), proprotein convertase subtilisin/kexin type-9 (PCSK9) or apo-lipoprotein B-100 (APOB). The aim of the present work was to determine the genetic basis of dyslipidemia in 11 unrelated Pakistani families.

Methods: High resolution melting (HRM), sequencing and restriction fragment length polymorphism (RFLP).

View Article and Find Full Text PDF

Background: Familial hypercholesterolaemia is a common autosomal-dominant disorder caused by mutations in three known genes. DNA-based cascade testing is recommended by UK guidelines to identify affected relatives; however, about 60% of patients are mutation-negative. We assessed the hypothesis that familial hypercholesterolaemia can also be caused by an accumulation of common small-effect LDL-C-raising alleles.

View Article and Find Full Text PDF

Familial hypercholesterolemia (FH) is caused by mutations in the genes for LDLR, APOB or PCSK9, and identification of the causative mutation provides definitive diagnosis so that the patient can be treated, their relatives tested and, therefore, premature heart disease prevented. DNA of eight unrelated individuals with clinically diagnosed FH were analyzed using a High-Resolution Melting method (HRM) for the LDLR gene (coding region, promoter and intron/exon boundaries), the APOB gene (part exon 26) and the PCSK9 gene (exon7). Variations found were sequenced and the effect on function of confirmed variants examined using predictive algorithms.

View Article and Find Full Text PDF

Background: Familial Hypercholesterolaemia (FH) is an autosomal dominant disease, caused by mutations in LDLR, APOB or PCSK9, which results in high levels of LDL-cholesterol (LDL-C) leading to early coronary heart disease. An autosomal recessive form of FH is also known, due to homozygous mutations in LDLRAP1. This study assessed the utility of an exome capture method and deep sequencing in FH diagnosis.

View Article and Find Full Text PDF

Familial hypercholesterolemia (FH) is caused predominately by variants in the low-density lipoprotein receptor gene (LDLR). We report here an update of the UCL LDLR variant database to include variants reported in the literature and in-house between 2008 and 2010, transfer of the database to LOVDv.2.

View Article and Find Full Text PDF

The majority of patients with the autosomal dominant disorder familial hypercholesterolemia (FH) carry novel mutations in the low density lipoprotein receptor (LDLR) that is involved in cholesterol regulation. In different populations the spectrum of mutations identified is quite different and to date there have been only a few reports of the spectrum of mutations in FH patients from Pakistan. In order to identify the causative LDLR variants the gene was sequenced in a Pakistani FH family, while high resolution melting analysis followed by sequencing was performed in a panel of 27 unrelated sporadic hypercholesterolemia patients.

View Article and Find Full Text PDF

Cascade testing using DNA-mutation information is now recommended in the UK for patients with familial hypercholesterolaemia (FH). We compared the detection rate and mutation spectrum in FH patients with a clinical diagnosis of definite (DFH) and possible (PFH) FH. Six hundred and thirty-five probands from six UK centres were tested for 18 low-density lipoprotein receptor gene (LDLR) mutations, APOB p.

View Article and Find Full Text PDF

Aims: Current screening methods, such as single strand conformational polymorphism (SSCP) and denaturing high performance liquid chromatography (dHPLC) that are used for detecting mutations in familial hypercholesterolaemia (FH) subjects are time consuming, costly and only 80-90% sensitive. Here we have tested high-resolution melt (HRM) analysis for mutation detection using the Rotor-Gene(6000) realtime rotary analyser. Methods and subjects Polymerase chain reaction and melt conditions (HRM) for 23 fragments of the LDL-receptor gene, a region of exon 26 in the APOB gene (including p.

View Article and Find Full Text PDF

Background: We measured plasma PCSK9 concentrations in healthy men with a PCSK9 (proprotein convertase subtilisin/kexin type 9) loss-of-function variant (p.R46L), in statin-treated patients with a clinical diagnosis of familial hypercholesterolemia (FH) and carrying a PCSK9 gain-of-function mutation (p.D374Y), and in statin-treated patients with FH due to different genetic causes.

View Article and Find Full Text PDF

Familial hypercholesterolaemia (FH) is a common single gene disorder, pre-disposing to cardiovascular disease, which is most commonly caused by mutations in the LDL-receptor (LDLR) gene. About 5% of patients carry the p.R3527Q (previously R3500Q) mutation in the apolipoprotein B (APOB) gene and 2% carry the p.

View Article and Find Full Text PDF

Objective: The purpose of this study was to identify rare APOA5 variants in 130 severe hypertriglyceridemic patients by sequencing, and to test their functionality, since no patient recall was possible.

Methods And Results: We studied the impact in vitro on LPL activity and receptor binding of 3 novel heterozygous variants, apoAV-E255G, -G271C, and -H321L, together with the previously reported -G185C, -Q139X, -Q148X, and a novel construct -Delta139 to 147. Using VLDL as a TG-source, compared to wild type, apoAV-G255, -L321 and -C185 showed reduced LPL activation (-25% [P=0.

View Article and Find Full Text PDF

Familial hypercholesterolemia (FH) (OMIM 143890) is most commonly caused by variations in the LDLR gene which encodes the receptor for Low Density Lipoprotein (LDL) cholesterol particles. We have updated the University College London (UCL) LDLR FH database (http://www.ucl.

View Article and Find Full Text PDF

A novel sequence change in repeat 3 of the promoter of the low-density lipoprotein receptor (LDLR) gene, -139C>G, has been identified in a patient with familial hypercholesterolemia (FH). LDLR -139G has been passed to one offspring who also shows an FH phenotype. Transient transfection studies using luciferase gene reporter assays revealed a considerable reduction (74+/-1.

View Article and Find Full Text PDF

In the present study, we have determined the relative frequency of the R46L, I474V and E670G variants in the PCSK9 (protein convertase subtilisin/kexin type 9) gene and its association with plasma lipid levels and CHD (coronary heart disease) in healthy U.K. men and patients with clinically defined definite FH (familial hypercholesterolaemia).

View Article and Find Full Text PDF

DNA analysis and mutation identification is useful for the diagnosis of familial hypercholesterolaemia (FH), particularly in the young and in other situations where clinical diagnosis may be difficult, and enables unambiguous identification of at-risk relatives. Mutation screening of the whole of the three FH-causing genes is costly and time consuming. We have tested the specificity and sensitivity of a recently developed multiplex amplification refractory mutation system assay of 11 low-density lipoprotein receptor gene (LDLR) mutations, one APOB (p.

View Article and Find Full Text PDF

Alterations in the secretion of adipokines may explain the link between obesity, type 2 diabetes (T2DM) and coronary artery disease (CAD). These conditions have been associated with variation in the adiponectin gene, although evidence for this relationship has been variable, with differences found even in similar samples. This study aims to clarify these inconsistencies by determining the impact of identified adiponectin gene (ADIPOQ) variants (-11391G>A,-1377C>G[promoter] and +45T>G[exon 2] and +276G>T[intron 2]) on the prospective risk of CAD and T2DM in healthy men, and on adverse metabolic markers, in myocardial infarct survivors and controls from different parts of Europe.

View Article and Find Full Text PDF