Background: Barrett's esophagus (BE), the premalignant lesion of esophageal adenocarcinoma, is believed to develop as a result of chronic gastroesophageal reflux disease (GERD). Approximately 10 % of subjects with GERD progress to BE. Genetic, epigenetic and other risk factors may contribute to this inter-individual variability.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
July 2013
The barrier function of the esophageal epithelium is a major defense against gastroesophageal reflux disease. Previous studies have shown that reflux damage is reflected in a decrease in transepithelial electrical resistance associated with tight junction alterations in the esophageal epithelium. To develop novel therapies, it is critical to understand the molecular mechanisms whereby contact with a refluxate impairs esophageal barrier function.
View Article and Find Full Text PDFBackground And Aims: Morphological changes during human and mouse esophageal development have been well characterized. However, changes at the molecular level in the course of esophageal morphogenesis remain unclear. This study aims to globally profile critical genes and signaling pathways during the development of mouse esophagus.
View Article and Find Full Text PDFBarrett's esophagus (BE) is defined as the metaplastic conversion of esophageal squamous epithelium to intestinalized columnar epithelium. As a premalignant lesion of esophageal adenocarcinoma (EAC), BE develops as a result of chronic gastroesophageal reflux disease (GERD). Many studies have been conducted to understand the molecular mechanisms of this disease.
View Article and Find Full Text PDF