Memory consolidation can benefit from post-learning sleep, eventually leading to long-term microstructural brain modifications to accommodate new memory representations. Non-invasive diffusion-weighted magnetic resonance imaging (DWI) allows the observation of (micro)structural brain remodeling after time-limited motor learning. Here, we combine conventional diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) that allows modeling dendritic and axonal complexity in gray matter to investigate with improved specificity the microstructural brain mechanisms underlying time- and sleep-dependent motor memory consolidation dynamics.
View Article and Find Full Text PDFRetrieving previously stored information makes memory traces labile again and can trigger restabilization in a strengthened or weakened form depending on the reactivation condition. Available evidence for long-term performance changes upon reactivation of motor memories and the effect of post-learning sleep on their consolidation remains scarce, and so does the data on the ways in which subsequent reactivation of motor memories interacts with sleep-related consolidation. Eighty young volunteers learned (Day 1) a 12-element Serial Reaction Time Task (SRTT) before a post-training Regular Sleep (RS) or Sleep Deprivation (SD) night, either followed (Day 2) by morning motor reactivation through a short SRTT testing or no motor activity.
View Article and Find Full Text PDFEvidence for sleep-dependent changes in microstructural neuroplasticity remains scarce, despite the fact that it is a mandatory correlate of the reorganization of learning-related functional networks. We investigated the effects of post-training sleep on structural neuroplasticity markers measuring standard diffusion tensor imaging (DTI), mean diffusivity (MD), and the revised biophysical neurite orientation dispersion and density imaging (NODDI), free water fraction (FWF), and neurite density (NDI) parameters that enable disentangling whether MD changes result from modifications in neurites or in other cellular components (e.g.
View Article and Find Full Text PDFBiochem Pharmacol
September 2021
Neuroplasticity refers to the fact that our brain can partially modify both structure and function to adequately respond to novel environmental stimulations. Neuroplasticity mechanisms are not only operating during the acquisition of novel information (i.e.
View Article and Find Full Text PDF