Effective bioremediation of hydrocarbons requires innovative approaches to minimize phosphate precipitation in soils of different buffering capacities. Understanding the mechanisms underlying sustained stimulation of bacterial activity remains a key challenge for optimizing bioremediation-particularly in northern regions. Positron emission tomography (PET) can trace microbial activity within the naturally occurring soil structure of intact soils.
View Article and Find Full Text PDFChemoselective reactions with thiols have long held promise for the site-specific bioconjugation of antibodies and antibody fragments. Yet bifunctional probes bearing monovalent maleimides-long the "gold standard" for thiol-based ligations-are hampered by two intrinsic issues: the instability of the maleimide-thiol bond and the need to permanently disrupt disulfide linkages in order to facilitate bioconjugation. Herein, we present the synthesis, characterization, and validation of DiPODS, a novel bioconjugation reagent containing a pair of oxadiazolyl methyl sulfone moieties capable of irreversibly forming covalent bonds with two thiolate groups while simultaneously rebridging disulfide linkages.
View Article and Find Full Text PDF[F]FPEB is a positron emission tomography (PET) radiopharmaceutical used for imaging the abundance and distribution of mGluR5 in the central nervous system (CNS). Efficient radiolabeling of the aromatic ring of [F]FPEB has been an ongoing challenge. Herein, five metal-free precursors for the radiofluorination of [F]FPEB were compared, namely, a chloro-, nitro-, sulfonium salt, and two spirocyclic iodonium ylide (SCIDY) precursors bearing a cyclopentyl (SPI5) and a new adamantyl (SPIAd) auxiliary.
View Article and Find Full Text PDF