Background: The use of 5-aminolevulinic acid (5-ALA) for intraoperative protoporphyrin IX fluorescent imaging in the resection of malignant gliomas has been demonstrated to improve tumor visualization, increase the extent of resection, and extend progression-free survival. The current technique for visualization of 5-ALA consists of excitation and emission filters built into the operating microscope. However, there are notable limitations to this process, including low quantum yield, expense, and masking of surrounding anatomy.
View Article and Find Full Text PDFThough frequently effective in the management of medically refractory seizures, epilepsy surgery presents numerous challenges. Selection of the appropriate candidate patients who are likely to benefit from surgery is critical to achieving seizure freedom and avoiding neurocognitive morbidity. Identifying the seizure focus and mapping epileptogenic networks involves an interdisciplinary team dedicated to formulating a safe and effective surgical plan.
View Article and Find Full Text PDFIntramedullary spinal cord tumors (IMSCT) comprise a rare subset of CNS tumors that have distinct management strategies based on histopathology. These tumors often present challenges in regards to optimal timing for surgery, invasiveness, and recurrence. Advances in microsurgical techniques and technological adjuncts have improved extent of resection and outcomes with IMSCT.
View Article and Find Full Text PDFObjective: The authors tested the feasibility of magnetic resonance-guided focused ultrasound (MRgFUS) ablation of mesial temporal lobe epilepsy (MTLE) seizure circuits. Up to one-third of patients with mesial temporal sclerosis (MTS) suffer from medically refractory epilepsy requiring surgery. Because current options such as open resection, laser ablation, and Gamma Knife radiosurgery pose potential risks, such as infection, hemorrhage, and ionizing radiation, and because they often produce visual or neuropsychological deficits, the authors developed a noninvasive MRgFUS ablation strategy for mesial temporal disconnection to mitigate these risks.
View Article and Find Full Text PDFBackground: The association between mid-facial clefts and Chiari malformation in the medical literature has been restricted to patients with syndromic craniofacial abnormalities. A common shared developmental pathway including causative factors for facial clefts and "complex" Chiari malformations, both midline skull base pathologies, seems logical but has not been reported. The coincident presentation of these findings in a single patient, and our subsequent discovery of other patients harboring these mutual findings prompted further investigation.
View Article and Find Full Text PDFBackground: Although ventriculoperitoneal shunt (VPS) surgery is the most frequent surgical treatment for patients with hydrocephalus, modern rates of complications in adults are uncertain.
Methods: We performed a retrospective cohort study of adult patients hospitalized at the time of their first recorded procedure code for VPS surgery between 2005 and 2012 at nonfederal acute care hospitals in California, Florida, and New York. We excluded patients who during the index hospitalization for VPS surgery had concomitant codes for VPS revision, central nervous system (CNS) infection, or died during the index hospitalization.
Background: Little is known about the natural history of non-surgically managed subdural hematoma (SDH). The purpose of this study is to determine rates of adverse events after non-surgical management of SDH and whether these outcomes differ depending on traumatic versus nontraumatic etiology. A retrospective cohort study was conducted using administrative claims data on all emergency department visits and acute care hospitalizations at nonfederal facilities in California from 2005 to 2011, Florida from 2005 to 2012, and New York from 2006 to 2011.
View Article and Find Full Text PDFA rare neurodevelopmental disorder in the Old Order Mennonite population called PMSE (polyhydramnios, megalencephaly, and symptomatic epilepsy syndrome; also called Pretzel syndrome) is characterized by infantile-onset epilepsy, neurocognitive delay, craniofacial dysmorphism, and histopathological evidence of heterotopic neurons in subcortical white matter and subependymal regions. PMSE is caused by a homozygous deletion of exons 9 to 13 of the LYK5/STRADA gene, which encodes the pseudokinase STRADA, an upstream inhibitor of mammalian target of rapamycin complex 1 (mTORC1). We show that disrupted pathfinding in migrating mouse neural progenitor cells in vitro caused by STRADA depletion is prevented by mTORC1 inhibition with rapamycin or inhibition of its downstream effector p70 S6 kinase (p70S6K) with the drug PF-4708671 (p70S6Ki).
View Article and Find Full Text PDFObjective: Focal cortical dysplasia type IIB (FCDIIB) is a sporadic developmental malformation of the cerebral cortex highly associated with pediatric epilepsy. Balloon cells (BCs) in FCDIIB exhibit constitutive activation of the mammalian target of rapamycin complex 1 (mTORC1) signaling pathway. Recently, the high-risk human papillomavirus type 16 oncoprotein E6 was identified as a potent activator of mTORC1 signaling.
View Article and Find Full Text PDFTuberous sclerosis complex (TSC) is characterized by developmental malformations of the cerebral cortex known as tubers, comprised of cells that exhibit enhanced mammalian target of rapamycin (mTOR) signaling. To date, there are no reports of mTORC1 and mTORC2 activation in fetal tubers or in neural progenitor cells lacking Tsc2. We demonstrate mTORC1 activation by immunohistochemical detection of substrates phospho-p70S6K1 (T389) and phospho-S6 (S235/236), and mTORC2 activation by substrates phospho-PKCα (S657), phospho-Akt (Ser473), and phospho-SGK1 (S422) in fetal tubers.
View Article and Find Full Text PDFObject: The incidence of, and risk factors for, perioperative seizures and the need for perioperative antiepileptic drugs (AEDs) in previously seizure-free children with brain tumors remains unclear. The authors have undertaken a review of previously seizure-free pediatric patients with brain tumors undergoing resection to identify the incidence of seizures in the perioperative period, and to characterize risk factors for perioperative seizures in this population.
Methods: A retrospective review was conducted of all patients between 0 and 19 years of age without prior seizures who underwent intracranial tumor resection at the authors' institution between January 2005 and December 2009.
Epidermal growth factor (EGF), hepatocyte growth factor (HGF), and vascular endothelial growth factor (VEGF) regulate angiogenesis and cell growth in the developing brain. EGF, HGF, and VEGF modulate the activity of the mammalian target of rapamycin (mTOR) cascade, a pathway regulating cell growth that is aberrantly activated in tuberous sclerosis complex (TSC). We hypothesized that expression of EGF, HGF, VEGF, and their receptors EGFR, c-Met, and Flt-1, respectively, would be altered in TSC.
View Article and Find Full Text PDFPolyhydramnios, megalencephaly, and symptomatic epilepsy syndrome (PMSE) is a rare human autosomal-recessive disorder characterized by abnormal brain development, cognitive disability, and intractable epilepsy. It is caused by homozygous deletions of STE20-related kinase adaptor alpha (STRADA). The underlying pathogenic mechanisms of PMSE and the role of STRADA in cortical development remain unknown.
View Article and Find Full Text PDFRepetition suppression (RS) is a reduction of neural response that is often observed when stimuli are presented more than once. Many functional magnetic resonance imaging (fMRI) studies have exploited RS to probe the sensitivity of cortical regions to variations in different stimulus dimensions; however, the neural mechanisms underlying fMRI-RS are not fully understood. Here we test the hypothesis that long-interval (between-trial) and short-interval (within-trial) RS effects are caused by distinct and independent neural mechanisms.
View Article and Find Full Text PDFA key component of spatial navigation is the ability to use visual information to ascertain where one is located and how one is oriented in the world. We used functional magnetic resonance imaging to examine the neural correlates of this phenomenon in humans. Subjects were scanned while retrieving different kinds of topographical and nontopographical information in response to visual scenes.
View Article and Find Full Text PDF