Sexual signals are shaped by their intended and unintended receivers as well as the signalling environment. This interplay between sexual and natural selection can lead to divergence in signals in heterogeneous environments. Yet, the extent to which gene flow is restricted when signalling phenotypes vary across environments and over what spatial scales remains an outstanding question.
View Article and Find Full Text PDFBy studying systems in their earliest stages of differentiation, we can learn about the evolutionary forces acting within and among populations and how those forces could contribute to reproductive isolation. Such an understanding would help us to better discern and predict how selection leads to the maintenance of multiple morphs within a species, rather than speciation. The postglacial adaptive radiation of the threespine stickleback () is one of the best-studied cases of evolutionary diversification and rapid, repeated speciation.
View Article and Find Full Text PDFParental experience alters survival-related phenotypes of offspring in both adaptive and nonadaptive ways, yielding rapid inter- and transgenerational fitness effects. Yet, fitness comprises survival and reproduction, and parental effects on mating decisions could alter the strength and direction of sexual selection, affecting long-term evolutionary trajectories. We used a full factorial design in which threespine stickleback (Gasterosteus aculeatus) mothers, fathers, both, or neither were exposed to a model predator at developmentally appropriate times to test for predator-induced maternal, paternal, and joint parental effects on daughters' mating behavior.
View Article and Find Full Text PDFOur knowledge of how male competition contributes to speciation is dominated by investigations of competition between within-species morphs or closely related species that differ in conspicuous traits expressed during the breeding season (e.g. color, song).
View Article and Find Full Text PDF