Publications by authors named "Whisnant K"

Self-replication of bioorganic molecules and oil microdroplets have been explored as models in prebiotic chemistry. An analogous process for inorganic nanomaterials would involve the autocatalytic nucleation of metal, semiconductor, or ceramic nanoparticles-an area that remains largely uncharted. Demonstrating such systems would be both fundamentally intriguing and practically relevant, especially if the resulting particles self-assemble into complex structures beyond the capabilities of molecules or droplets.

View Article and Find Full Text PDF
Article Synopsis
  • - The Daya Bay experiment has successfully measured the oscillation amplitude and frequency of reactor antineutrinos over nearly 2,000 days of data, finding significant results about their behavior.
  • - They observed over 3.6 million signal candidates using improved selection and calibration methods, leading to a measurement of sin²2θ₁₃ = 0.0759 with a precision that indicates how antineutrinos change states.
  • - Combining results from different detection methods at Daya Bay, the overall measurement of sin²2θ₁₃ increased precision to 0.0833±0.0022, representing an 8% improvement in understanding these neutrino properties.
View Article and Find Full Text PDF

This Letter presents results of a search for the mixing of a sub-eV sterile neutrino with three active neutrinos based on the full data sample of the Daya Bay Reactor Neutrino Experiment, collected during 3158 days of detector operation, which contains 5.55×10^{6} reactor ν[over ¯]_{e} candidates identified as inverse beta-decay interactions followed by neutron capture on gadolinium. The analysis benefits from a doubling of the statistics of our previous result and from improvements of several important systematic uncertainties.

View Article and Find Full Text PDF

Composites from 2D nanomaterials show uniquely high electrical, thermal and mechanical properties. Pairing their robustness with polarization rotation is needed for hyperspectral optics in extreme conditions. However, the rigid nanoplatelets have randomized achiral shapes, which scramble the circular polarization of photons with comparable wavelengths.

View Article and Find Full Text PDF

Reactor neutrino experiments play a crucial role in advancing our knowledge of neutrinos. In this Letter, the evolution of the flux and spectrum as a function of the reactor isotopic content is reported in terms of the inverse-beta-decay yield at Daya Bay with 1958 days of data and improved systematic uncertainties. These measurements are compared with two signature model predictions: the Huber-Mueller model based on the conversion method and the SM2018 model based on the summation method.

View Article and Find Full Text PDF

We present a new determination of the smallest neutrino mixing angle θ_{13} and the mass-squared difference Δm_{32}^{2} using a final sample of 5.55×10^{6} inverse beta-decay (IBD) candidates with the final-state neutron captured on gadolinium. This sample is selected from the complete dataset obtained by the Daya Bay reactor neutrino experiment in 3158 days of operation.

View Article and Find Full Text PDF

This Letter reports the first measurement of high-energy reactor antineutrinos at Daya Bay, with nearly 9000 inverse beta decay candidates in the prompt energy region of 8-12 MeV observed over 1958 days of data collection. A multivariate analysis is used to separate 2500 signal events from background statistically. The hypothesis of no reactor antineutrinos with neutrino energy above 10 MeV is rejected with a significance of 6.

View Article and Find Full Text PDF

A joint determination of the reactor antineutrino spectra resulting from the fission of ^{235}U and ^{239}Pu has been carried out by the Daya Bay and PROSPECT Collaborations. This Letter reports the level of consistency of ^{235}U spectrum measurements from the two experiments and presents new results from a joint analysis of both data sets. The measurements are found to be consistent.

View Article and Find Full Text PDF

Searches for electron antineutrino, muon neutrino, and muon antineutrino disappearance driven by sterile neutrino mixing have been carried out by the Daya Bay and MINOS+ collaborations. This Letter presents the combined results of these searches, along with exclusion results from the Bugey-3 reactor experiment, framed in a minimally extended four-neutrino scenario. Significantly improved constraints on the θ_{μe} mixing angle are derived that constitute the most constraining limits to date over five orders of magnitude in the mass-squared splitting Δm_{41}^{2}, excluding the 90% C.

View Article and Find Full Text PDF

This Letter reports the first extraction of individual antineutrino spectra from ^{235}U and ^{239}Pu fission and an improved measurement of the prompt energy spectrum of reactor antineutrinos at Daya Bay. The analysis uses 3.5×10^{6} inverse beta-decay candidates in four near antineutrino detectors in 1958 days.

View Article and Find Full Text PDF

We report a measurement of electron antineutrino oscillation from the Daya Bay Reactor Neutrino Experiment with nearly 4 million reactor ν[over ¯]_{e} inverse β decay candidates observed over 1958 days of data collection. The installation of a flash analog-to-digital converter readout system and a special calibration campaign using different source enclosures reduce uncertainties in the absolute energy calibration to less than 0.5% for visible energies larger than 2 MeV.

View Article and Find Full Text PDF

The Daya Bay experiment has observed correlations between reactor core fuel evolution and changes in the reactor antineutrino flux and energy spectrum. Four antineutrino detectors in two experimental halls were used to identify 2.2 million inverse beta decays (IBDs) over 1230 days spanning multiple fuel cycles for each of six 2.

View Article and Find Full Text PDF

Searches for a light sterile neutrino have been performed independently by the MINOS and the Daya Bay experiments using the muon (anti)neutrino and electron antineutrino disappearance channels, respectively. In this Letter, results from both experiments are combined with those from the Bugey-3 reactor neutrino experiment to constrain oscillations into light sterile neutrinos. The three experiments are sensitive to complementary regions of parameter space, enabling the combined analysis to probe regions allowed by the Liquid Scintillator Neutrino Detector (LSND) and MiniBooNE experiments in a minimally extended four-neutrino flavor framework.

View Article and Find Full Text PDF

This Letter reports an improved search for light sterile neutrino mixing in the electron antineutrino disappearance channel with the full configuration of the Daya Bay Reactor Neutrino Experiment. With an additional 404 days of data collected in eight antineutrino detectors, this search benefits from 3.6 times the statistics available to the previous publication, as well as from improvements in energy calibration and background reduction.

View Article and Find Full Text PDF

This Letter reports a measurement of the flux and energy spectrum of electron antineutrinos from six 2.9 GWth nuclear reactors with six detectors deployed in two near (effective baselines 512 and 561 m) and one far (1579 m) underground experimental halls in the Daya Bay experiment. Using 217 days of data, 296 721 and 41 589 inverse β decay (IBD) candidates were detected in the near and far halls, respectively.

View Article and Find Full Text PDF

We report a new measurement of electron antineutrino disappearance using the fully constructed Daya Bay Reactor Neutrino Experiment. The final two of eight antineutrino detectors were installed in the summer of 2012. Including the 404 days of data collected from October 2012 to November 2013 resulted in a total exposure of 6.

View Article and Find Full Text PDF

A search for light sterile neutrino mixing was performed with the first 217 days of data from the Daya Bay Reactor Antineutrino Experiment. The experiment's unique configuration of multiple baselines from six 2.9 GW(th) nuclear reactors to six antineutrino detectors deployed in two near (effective baselines 512 m and 561 m) and one far (1579 m) underground experimental halls makes it possible to test for oscillations to a fourth (sterile) neutrino in the 10(-3) eV(2)<|Δm(41)(2) |< 0.

View Article and Find Full Text PDF

A measurement of the energy dependence of antineutrino disappearance at the Daya Bay reactor neutrino experiment is reported. Electron antineutrinos (ν¯(e)) from six 2.9  GW(th) reactors were detected with six detectors deployed in two near (effective baselines 512 and 561 m) and one far (1579 m) underground experimental halls.

View Article and Find Full Text PDF

The Daya Bay Reactor Neutrino Experiment has measured a nonzero value for the neutrino mixing angle θ(13) with a significance of 5.2 standard deviations. Antineutrinos from six 2.

View Article and Find Full Text PDF

We perform a model-independent analysis of solar neutrino flux rates including the recent charged-current measurement at the Sudbury Neutrino Observatory (SNO). We derive a universal sum rule involving SNO and SuperKamiokande rates, and show that the SNO neutral-current measurement cannot fix the fraction of solar nu(e) oscillating to sterile neutrinos. The large uncertainty in the standard solar model (8)B flux impedes a determination of the sterile neutrino fraction.

View Article and Find Full Text PDF

We consider the consequences for future neutrino factory experiments of small CPT-odd interactions in neutrino oscillations. The nu(&mgr;)-->nu(&mgr;) and nu;(&mgr;)-->nu;(&mgr;) survival probabilities at a baseline L = 732 km can test for CPT-odd contributions at orders of magnitude better sensitivity than present neutrino sector limits. Interference between the CPT-violating interaction and CPT-even mass terms in the Lagrangian can lead to a resonant enhancement of the oscillation amplitude.

View Article and Find Full Text PDF