The Green Revolution transformed agriculture with high-yielding, stress-resistant varieties. However, the urgent need for more sustainable agricultural development presents new challenges: increasing crop yield, improving nutritional quality, and enhancing resource-use efficiency. Soil plays a vital role in crop-production systems and ecosystem services, providing water, nutrients, and physical anchorage for crop growth.
View Article and Find Full Text PDFBiogeochemical reactions occurring in soil pore space underpin gaseous emissions measured at macroscopic scales but are difficult to quantify due to their complexity and heterogeneity. We develop a volumetric-average method to calculate aerobic respiration rates analytically from soil with microscopic soil structure represented explicitly. Soil water content in the model is the result of the volumetric-average of the microscopic processes, and it is nonlinearly coupled with temperature and other factors.
View Article and Find Full Text PDFWe investigated the effect of soil organic carbon (SOC) on the consolidation behaviour of soil from two long term field experiments at Rothamsted; the Broadbalk Wheat Experiment and Hoosfield Spring Barley. These experiments are located on soil with similar particle size distributions, and include treatments with SOC contents ranging from approximately 1-3.5 g/100 g.
View Article and Find Full Text PDFUnlabelled: Plant roots release various organic materials that may modify soil structure and affect heat and mass transfer processes. The objective of this study was to determine the effects of a synthetic root exudate (SRE) on penetrometer resistance (PR), thermal conductivity (λ), hydraulic conductivity () and evaporation of water in a sandy soil. Soil samples, mixed with either distilled water or the SRE, were packed into columns at a designated bulk density and water content, and incubated for 7 days at 18°C.
View Article and Find Full Text PDFBackground: Wheat spike architecture is a key determinant of multiple grain yield components and detailed examination of spike morphometric traits is beneficial to explain wheat grain yield and the effects of differing agronomy and genetics. However, quantification of spike morphometric traits has been very limited because it relies on time-consuming manual measurements.
Results: In this study, using X-ray Computed Tomography imaging, we proposed a method to efficiently detect the 3D architecture of wheat spikes and component spikelets by clustering grains based on their Euclidean distance and relative positions.
Soil compaction represents a major challenge for modern agriculture. Compaction is intuitively thought to reduce root growth by limiting the ability of roots to penetrate harder soils. We report that root growth in compacted soil is instead actively suppressed by the volatile hormone ethylene.
View Article and Find Full Text PDFIncreased mechanical impedance induced by soil drying or compaction causes reduction in plant growth and crop yield. However, how mechanical impedance interacts with nutrient stress has been largely unknown. Here, we investigated the effect of mechanical impedance on the growth of wheat seedlings under contrasting phosphorus (P) supply in a sand culture system which allows the mechanical impedance to be independent of water and nutrient availability.
View Article and Find Full Text PDFWheat (Triticum aestivum L.) root growth in the subsoil is usually constrained by soil strength, although roots can use macropores to elongate to deeper layers. The quantitative relationship between the elongation of wheat roots and the soil pore system, however, is still to be determined.
View Article and Find Full Text PDFBackground And Aims: We aim to quantify the variation in root distribution in a set of 35 experimental wheat lines. We also compared the effect of variation in hydraulic properties of the rhizosphere on water uptake by roots.
Methods: We measured the root length density and soil drying in 35 wheat lines in a field experiment.
Trends Plant Sci
December 2020
Root-soil interactions in the rhizosphere are central to resource acquisition and crop production in agricultural systems. However, apart from studies in idealized experimental systems, rhizosphere processes in real agricultural soils in situ are largely uncharacterized. This limits the contribution of rhizosphere science to agriculture and the ongoing Green Revolution.
View Article and Find Full Text PDFDeep rooting is critical for access to water and nutrients found in subsoil. However, damage to soil structure and the natural increase in soil strength with depth, often impedes root penetration. Evidence suggests that roots use macropores (soil cavities greater than 75 μm) to bypass strong soil layers.
View Article and Find Full Text PDFNutrient distribution and neighbours can impact plant growth, but how neighbours shape root-foraging strategy for nutrients is unclear. Here, we explore new patterns of plant foraging for nutrients as affected by neighbours to improve nutrient acquisition. Maize (Zea mays) was grown alone (maize), or with maize (maize/maize) or faba bean (Vicia faba) (maize/faba bean) as a neighbour on one side and with or without a phosphorus (P)-rich zone on the other in a rhizo-box experiment.
View Article and Find Full Text PDFIn the field, wheat experiences a combination of physical and nutrient stresses. There has been a tendency to study root impedance and water stress in separation and less is known about how they might interact. In this study, we investigated the effect of root impedance on the growth of three wheat varieties (Cadenza, Xi19 and Battalion) at different levels of nitrate availability, from 0-20 mM nitrate, in sand culture.
View Article and Find Full Text PDFUnlabelled: In this study, we explored the effects of microbial activity on the evaporation of water from cores of a sandy soil under laboratory conditions. We applied treatments to stimulate microbial activity by adding different amounts of synthetic analogue root exudates. For comparison, we used soil samples without synthetic root exudates as control and samples treated with mercuric chloride to suppress microbial activity.
View Article and Find Full Text PDFThis work compared root length distributions of different winter wheat genotypes with soil physical measurements, in attempting to explain the relationship between root length density and soil depth. Field experiments were set up to compare the growth of various wheat lines, including near isogenic lines (Rht-B1a Tall NIL and Rht-B1c Dwarf NIL) and wheat lines grown commercially (cv. Battalion, Hystar Hybrid, Istabraq, and Robigus).
View Article and Find Full Text PDFThe rhizosphere is the zone of soil influenced by a plant root and is critical for plant health and nutrient acquisition. All below ground resources must pass through this dynamic zone prior to their capture by plant roots. However, researching the undisturbed rhizosphere has proved very challenging.
View Article and Find Full Text PDFUnlabelled: We explore the effect of microbial activity stimulated by root exudates on the penetrometer resistance of soil and its elastic modulus. This is important because it is a measure of the mechanical strength of soil and it correlates closely with the rate of elongation of roots. A sandy soil was incubated with a synthetic root exudate at different temperatures, for different lengths of time and with selective suppression of either fungi or bacteria.
View Article and Find Full Text PDFCrop production depends on the availability of water and mineral nutrients, and increased yields might be facilitated by a greater focus on roots-soil interactions. Soil properties affecting plant growth include drought, compaction, nutrient deficiency, mineral toxicity, salinity, and submergence. Plant roots respond to the soil environment both spatially and temporally by avoiding stressful soil environments and proliferating in more favorable environments.
View Article and Find Full Text PDFThe relationship between root morphological and physiological responses to variable P supply in different plant species is poorly understood. We compared root morphological and physiological responses to P supply in seven crop species (, , , , ) treated with or without 100 mg P kg in two soils (acidic and calcareous). Phosphorus deficiency decreased root length more in fibrous root species () than legumes.
View Article and Find Full Text PDFBackground And Aims: There is an urgent need to develop new high throughput approaches to phenotype roots in the field. Excavating roots to make direct measurements is labour intensive. An alternative to excavation is to measure soil drying profiles and to infer root activity.
View Article and Find Full Text PDFIn this opinion article we examine the relationship between penetrometer resistance and soil depth in the field. Assuming that root growth is inhibited at penetrometer resistances > 2.5 MPa, we conclude that in most circumstances the increases in penetrometer resistance with depth are sufficiently great to confine most deep roots to elongating in existing structural pores.
View Article and Find Full Text PDFRationale: This study aimed (i) to determine the isotopic fractionation factors associated with N2O production and reduction during soil denitrification and (ii) to help specify the factors controlling the magnitude of the isotope effects. For the first time the isotope effects of denitrification were determined in an experiment under oxic atmosphere and using a novel approach where N2O production and reduction occurred simultaneously.
Methods: Soil incubations were performed under a He/O2 atmosphere and the denitrification product ratio [N2O/(N2 + N2O)] was determined by direct measurement of N2 and N2O fluxes.
Root growth is influenced by soil nutrients and neighbouring plants, but how these two drivers affect root interactions and regulate plant growth dynamics is poorly understood. Here, interactions between the roots of maize (Zea mays) and faba bean (Vicia faba) are characterized. Maize was grown alone (maize) or with maize (maize/maize) or faba bean (maize/faba bean) as competitors under five levels of phosphorus (P) supply, and with homogeneous or heterogeneous P distribution.
View Article and Find Full Text PDFBackground And Aims: We were interested in the effect of impedance to root growth on root and shoot architecture of wheat. It is known that semi-dwarfing alleles decrease the degree of leaf stunting due to root impedance. We compared commercial wheat cultivars containing different alleles to determine whether leaf stunting caused by root impedance differed between cultivars.
View Article and Find Full Text PDF