Physiol Genomics
February 2012
cAMP mediates diverse cellular signals including prostaglandin (PG) E(2)-mediated intraocular pressure (IOP)-lowering activity in human ocular ciliary smooth muscle cells (hCSM). We have identified gene regulatory networks and key genes upon activation of the cAMP pathway in hCSM, using novel agonists highly selective for PGE(2) receptor subtypes EP2 or EP4, which are G protein-coupled receptors well known to activate cAMP signaling. Here we describe a novel, EP2/EP4-induced, primate-specific gene of hitherto unknown function, also known as C6orf176 (chromosome 6 open reading frame 176) and recently reclassified as noncoding RNA in NCBI's database.
View Article and Find Full Text PDFProdrugs of 5-aminosalicylic acid (5-ASA), such as sulfasalazine, have been the mainstay for the treatment and maintenance of inflammatory bowel disease (IBD) for decades, which is attributable to their antiadaptive immune activity. However, 5-ASA compromises regeneration of intestinal epithelia and induces apoptosis. The majority of patients eventually undergo colectomy.
View Article and Find Full Text PDFProstanoids are an important class of intraocular pressure (IOP)-lowering antiglaucoma agents that act primarily via increased uveo-scleral aqueous humor outflow through the ciliary body. We have developed two novel PGE(2) analogs that are specific agonists for the PGE(2) receptor subtypes EP2 and EP4, respectively. To identify gene regulatory networks and key players that mediate the physiological effects observed in vivo, we performed genomewide expression studies using human ciliary smooth muscle cells.
View Article and Find Full Text PDFWorld J Gastroenterol
November 2009
Aim: To investigate EP4-selective agonist effect on indomethacin-induced gastric lesions and on the spontaneous healing of chronic gastric ulcers.
Methods: In a mouse model of gastric bleeding with high dose of indomethacin (20 mg/kg), an EP4-selective agonist was administered orally. Stomach lesions and gastric mucous regeneration were monitored.
Inflammatory bowel disease (IBD) is often triggered and/or exacerbated by nonsteroidal anti-inflammatory drugs (NSAIDs). Among various prostanoids affected by NSAIDs, prostaglandin E2 (PGE2), in particular, seems to play critical roles in IBD via the EP4 receptor, one of the four PGE2 receptor subtypes (EP1-4). An EP4 agonist, [[3-[[(1R,2S,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxy-4-[3-(methoxymethyl)phenyl]-1-butenyl]-5-oxocyclopentyl]thio]propyl]thio]-acetic acid, C22H30O6S2 (ONO-AE1-329), for example, when topically applied, has been reported to ameliorate typical colitis symptoms by suppressing the production of cytotoxic cytokines in the dextran sodium sulfate (DSS)-induced colitis model.
View Article and Find Full Text PDFThe human 5-hydroxytryptamine-2C (5-HT2C) receptor has been the target of potential anxiolytics and antiobesity drugs, and its positive allosteric modulator was discovered to be l-threo-alpha-d-galacto-octopyranoside, methyl-7-chloro-6,7,8-trideoxy-6-[[(4-undecyl-2-piperidinyl)carbonyl]amino]-1-thiomonohydrochloride (2S-cis) (PNU-69176E). The drug at low micromolar concentrations (<25 microM) markedly enhanced [3H]5-HT binding (more than 300%) by increasing its affinity for low-affinity sites but with no appreciable effect on antagonist ([3H]mesulergine) binding. Functionally, PNU-69176E alone rendered receptors constitutively active, producing the pheno-types of 5-HT-activated receptors, as measured with mesulergine-sensitive guanosine 5'-O-(3-[35S]thio)triphosphate binding, transient inositol 1,4,5-triphosphate release, and [3H]inositol phosphate accumulation.
View Article and Find Full Text PDF1 The human 5-HT(2C) receptor, when expressed heterologously in various mammalian cell lines (HEK293, SH-EP and NIH-3T3) at various receptor densities (6 to 45 pmol mg(-1) protein), mediates robust agonist-induced GTPgamma(35)S binding from coupling to G(i) subtypes of G proteins, in addition to G(q/11). Such a phenotype, however, was not seen with the human 5-HT(2A) and 5-HT(2B) receptors, indicating their common pathway with 5-HT(2C) limited to G(q/11), not including G(i). 2 Because intracellular regions are largely responsible for signalling pathways, we prepared the chimeras of the 5-HT(2A) and 5-HT(2B) receptors where the second and third intracellular loops, and the C-terminal region were replaced with the 5-HT(2C) counterparts.
View Article and Find Full Text PDFThe neuronal nicotinic acetylcholine receptor subunit, alpha7, can form homopentameric receptor/ion channel complexes. Potential contributions of its N-terminal region to homomeric interactions were investigated, in comparison with the corresponding region of an analogous heteromeric subunit, alpha3. Recombinant chimeras were prepared upon engineering the N-terminal alpha7 (M1-V224) or alpha3 (M1-S232) sequence into the background of another homomeric mouse 5-hydroxytryptamine3 (5-HT)(3) receptor.
View Article and Find Full Text PDF