Publications by authors named "Wezel J"

Chiral phases of matter, characterized by a definite handedness, abound in nature, ranging from the crystal structure of quartz to spiraling spin states in helical magnets. In 1T-TiSe_{2} a source of chirality has been proposed that stands apart from these classical examples as it arises from combined electronic charge and quantum orbital fluctuations. This may allow its chirality to be accessed and manipulated without imposing either structural or magnetic handedness.

View Article and Find Full Text PDF

Superconductivity often emerges as a dome around a quantum critical point (QCP) where long-range order is suppressed to zero temperature, mostly in magnetically ordered materials. However, the emergence of superconductivity at charge-order QCPs remains shrouded in mystery, despite its relevance to high-temperature superconductors and other exotic phases of matter. Here, we present resistance measurements proving that a dome of superconductivity surrounds the putative charge-density-wave QCP in pristine samples of titanium diselenide tuned with hydrostatic pressure.

View Article and Find Full Text PDF

The inability of Schrödinger's unitary time evolution to describe the measurement of a quantum state remains a central foundational problem. It was recently suggested that the unitarity of Schrödinger dynamics can be spontaneously broken, resulting in measurement as an emergent phenomenon in the thermodynamic limit. Here, we introduce a family of models for spontaneous unitarity violation that apply to generic initial superpositions over arbitrarily many states, using either single or multiple state-independent stochastic components.

View Article and Find Full Text PDF

Diagnosis of Lynch syndrome (LS) caused by a pathogenic germline MSH6 variant may be complicated by discordant immunohistochemistry (IHC) and/or by a microsatellite stable (MSS) phenotype. This study aimed to identify the various causes of the discordant phenotypes of colorectal cancer (CRC) and endometrial cancer (EC) in MSH6-associated LS. Data were collected from Dutch family cancer clinics.

View Article and Find Full Text PDF

The argument of environment-assisted invariance (known as envariance) implying Born's rule is widely used in models for quantum measurement to reason that they must yield the correct statistics, specifically for linear models. However, it has recently been shown that linear collapse models can never give rise to Born's rule. Here, we address this apparent contradiction and point out an inconsistency in the assumptions underlying the arguments based on envariance.

View Article and Find Full Text PDF

Thinning crystalline materials to two dimensions (2D) creates a rich playground for electronic phases, including charge, spin, superconducting, and topological order. Bulk materials hosting charge density waves (CDWs), when reduced to ultrathin films, have shown CDW enhancement and tunability. However, charge order confined to only 2D remains elusive.

View Article and Find Full Text PDF

In the presence of multiple bands, well-known electronic instabilities may acquire new complexity. While multiband superconductivity is the subject of extensive studies, the possibility of multiband charge density waves (CDWs) has been largely ignored so far. Here, combining energy dependent scanning tunnelling microscopy (STM) topography with a simple model of the charge modulations and a self-consistent calculation of the CDW gap, we find evidence for a multiband CDW in 2H-NbSe.

View Article and Find Full Text PDF

Background: Hepatocellular carcinoma (HCC) recurrence rates following locoregional treatment are high. As multireceptor tyrosine kinase inhibitors targeting vascular endothelial growth factor receptors (VEGFRs) are effective in advanced HCC, we assessed the efficacy and safety of neoadjuvant systemic treatment with dovitinib in early- and intermediate-stage HCC.

Materials And Methods: Twenty-four patients with modified Child-Pugh class A early- and intermediate-stage HCC received neoadjuvant oral dovitinib 500 mg daily (5 days on/2 days off) for 4 weeks, followed by locoregional therapy.

View Article and Find Full Text PDF

Topological edge modes are excitations that are localized at the materials' edges and yet are characterized by a topological invariant defined in the bulk. Such bulk-edge correspondence has enabled the creation of robust electronic, electromagnetic, and mechanical transport properties across a wide range of systems, from cold atoms to metamaterials, active matter, and geophysical flows. Recently, the advent of non-Hermitian topological systems-wherein energy is not conserved-has sparked considerable theoretical advances.

View Article and Find Full Text PDF

Cranial neural crest (NC) contributes to the developing vertebrate eye. By multidimensional, quantitative imaging, we traced the origin of the ocular NC cells to two distinct NC populations that differ in the maintenance of sox10 expression, Wnt signalling, origin, route, mode and destination of migration. The first NC population migrates to the proximal and the second NC cell group populates the distal (anterior) part of the eye.

View Article and Find Full Text PDF

The prognosis of chronic lymphocytic leukemia (CLL) depends on different markers, including cytogenetic aberrations, oncogenic mutations, and mutational status of the immunoglobulin (Ig) heavy-chain variable (IGHV) gene. The number of IGHV mutations distinguishes mutated (M) CLL with a markedly superior prognosis from unmutated (UM) CLL cases. In addition, B cell antigen receptor (BCR) stereotypes as defined by IGHV usage and complementarity-determining regions (CDRs) classify ∼30% of CLL cases into prognostically important subsets.

View Article and Find Full Text PDF

Magnetic Resonance Imaging (MRI) has become a valuable imaging modality in ophthalmology, especially for the diagnosis and treatment planning of patients with uveal melanoma, the most common primary intra-ocular tumor. We aim to develop and evaluate the value of silent Zero Echo Time (ZTE) MRI to image patients with ocular tumors at 7Tesla. Therefore, ZTE and different types of magnetization-prepared ZTE (FLAIR, SPIR, T2 and Saturation recovery), have been developed.

View Article and Find Full Text PDF

A charge density wave (CDW) is one of the fundamental instabilities of the Fermi surface occurring in a wide range of quantum materials. In dimensions higher than one, where Fermi surface nesting can play only a limited role, the selection of the particular wavevector and geometry of an emerging CDW should in principle be susceptible to controllable manipulation. In this work, we implement a simple method for straining materials compatible with low-temperature scanning tunneling microscopy/spectroscopy (STM/S), and use it to strain-engineer CDWs in -NbSe Our STM/S measurements, combined with theory, reveal how small strain-induced changes in the electronic band structure and phonon dispersion lead to dramatic changes in the CDW ordering wavevector and geometry.

View Article and Find Full Text PDF

Bose condensation has shaped our understanding of macroscopic quantum phenomena, having been realized in superconductors, atomic gases, and liquid helium. Excitons are bosons that have been predicted to condense into either a superfluid or an insulating electronic crystal. Using the recently developed technique of momentum-resolved electron energy-loss spectroscopy (M-EELS), we studied electronic collective modes in the transition metal dichalcogenide semimetal 1-TiSe Near the phase-transition temperature (190 kelvin), the energy of the electronic mode fell to zero at nonzero momentum, indicating dynamical slowing of plasma fluctuations and crystallization of the valence electrons into an exciton condensate.

View Article and Find Full Text PDF

Proof-of-pharmacology models to study compounds in healthy subjects offer multiple advantages. Simvastatin is known to induce mitochondrial dysfunction at least partly by depletion of co-enzyme Q10. The goal of this study was to evaluate a model of simvastatin-induced mitochondrial dysfunction in healthy subjects and to determine whether mitochondrial dysfunction could be pharmacologically reversed by treatment with co-enzyme Q10 (ubiquinol).

View Article and Find Full Text PDF

Purpose: To compare methods for estimating B maps used in retrospective correction of high-resolution anatomical images at ultra-high field strength. The B maps were obtained using three methods: (1) 1D navigators and coil sensitivities, (2) field probe (FP) data and a low-order spherical harmonics model, and (3) FP data and a training-based model.

Methods: Data from nine subjects were acquired while they performed activities inducing B field fluctuations.

View Article and Find Full Text PDF

Purpose: To implement an on-line monitoring system to detect eye blinks during ocular MRI using field probes, and to reacquire corrupted k-space lines by means of an automatic feedback system integrated with the MR scanner.

Methods: Six healthy subjects were scanned on a 7 Tesla MRI whole-body system using a custom-built receive coil. Subjects were asked to blink multiple times during the MR-scan.

View Article and Find Full Text PDF

Artificial quasicrystals are nowadays routinely manufactured, yet only two naturally occurring examples are known. We present a class of systems with the potential to be realized both artificially and in nature, in which the lowest energy state is a one-dimensional quasicrystal. These systems are based on incommensurately charge-ordered materials, in which the quasicrystalline phase competes with the formation of a regular array of discommensurations as a way of interpolating between incommensurate charge order at high temperatures and commensurate order at low temperatures.

View Article and Find Full Text PDF

Purpose: Fluctuations of the background magnetic field (B0 ) due to body and breathing motion can lead to significant artifacts in brain imaging at ultrahigh field. Corrections based on real-time sensing using external field probes show great potential. This study evaluates different aspects of field interpolation from these probes into the brain which is implicit in such methods.

View Article and Find Full Text PDF

Niobium diselenide has long served as a prototype of two-dimensional charge ordering, believed to arise from an instability of the electronic structure analogous to the one-dimensional Peierls mechanism. Despite this, various anomalous properties have recently been identified experimentally, which cannot be explained by Peierls-like weak-coupling theories. Here, we consider instead a model with strong electron-phonon coupling, taking into account both the full momentum and orbital dependence of the coupling matrix elements.

View Article and Find Full Text PDF

A new era in developmental biology has been ushered in by recent advances in the quantitative imaging of all-cell morphogenesis in living organisms. Here we have developed a light-sheet fluorescence microscopy-based framework with single-cell resolution for identification and characterization of subtle phenotypical changes of millimeter-sized organisms. Such a comparative study requires analyses of entire ensembles to be able to distinguish sample-to-sample variations from definitive phenotypical changes.

View Article and Find Full Text PDF

A charge-density wave (CDW) state has a broken symmetry described by a complex order parameter with an amplitude and a phase. The conventional view, based on clean, weak-coupling systems, is that a finite amplitude and long-range phase coherence set in simultaneously at the CDW transition temperature T(cdw). Here we investigate, using photoemission, X-ray scattering and scanning tunnelling microscopy, the canonical CDW compound 2H-NbSe2 intercalated with Mn and Co, and show that the conventional view is untenable.

View Article and Find Full Text PDF