Publications by authors named "Weygand D"

Article Synopsis
  • Work hardening in bcc single crystals like tungsten behaves differently at low temperatures than classical models suggest, particularly with high symmetry loading.
  • Research indicates that the high activation barrier for screw dislocation movement in tungsten leads to unexpected dislocation interactions and motion under certain loading conditions.
  • Advanced simulations and microscopy reveal that this behavior can be explained by the kink pair mechanism and incorporated into crystal plasticity models, helping to clarify why [100] oriented tungsten shows prolonged work hardening and increased ductility in highly deformed bcc metals.
View Article and Find Full Text PDF

Low-temperature deformation of body-centered cubic metals shows a significant amount of plastic slip on planes with low shear stresses, a phenomenon called anomalous slip. Despite progress in atomistic modeling of the consequences of complex stress states on dislocation mobility, the phenomenon of anomalous slip remained elusive. Using in situ Laue microdiffraction and discrete dislocation dynamics in micrometer sized tungsten single crystals, we demonstrate the occurrence of significant anomalous slip.

View Article and Find Full Text PDF

Microstructure reconstructions resulting from diffraction contrast tomography data of polycrystalline bulk strontium titanate were reinvestigated by means of electron backscatter diffraction (EBSD) characterization. Corresponding two-dimensional grain maps from the two characterization methods were aligned and compared, focusing on the spatial resolution at the internal interfaces. The compared grain boundary networks show a remarkably good agreement both morphologically and in crystallographic orientation.

View Article and Find Full Text PDF

We have measured cross sections for the γ(3)He → pd reaction at photon energies of 0.4-1.4 GeV and a center-of-mass angle of 90°.

View Article and Find Full Text PDF

Exclusive π(0) electroproduction at a beam energy of 5.75 GeV has been measured with the Jefferson Lab CLAS spectrometer. Differential cross sections were measured at more than 1800 kinematic values in Q(2), x(B), t, and ϕ(π), in the Q(2) range from 1.

View Article and Find Full Text PDF

We report on the first measurement of the F(2) structure function of the neutron from the semi-inclusive scattering of electrons from deuterium, with low-momentum protons detected in the backward hemisphere. Restricting the momentum of the spectator protons to ≲100 MeV/c and their angles to ≳100° relative to the momentum transfer allows an interpretation of the process in terms of scattering from nearly on-shell neutrons. The F(2)(n) data collected cover the nucleon-resonance and deep-inelastic regions over a wide range of Bjorken x for 0.

View Article and Find Full Text PDF

We report the first measurement of the transverse momentum dependence of double-spin asymmetries in semi-inclusive production of pions in deep-inelastic scattering off the longitudinally polarized proton. Data have been obtained using a polarized electron beam of 5.7 GeV with the CLAS detector at the Jefferson Lab (JLab).

View Article and Find Full Text PDF

We have measured the 3He(e,e' pp)n reaction at an incident energy of 4.7 GeV over a wide kinematic range. We identified spectator correlated pp and pn nucleon pairs by using kinematic cuts and measured their relative and total momentum distributions.

View Article and Find Full Text PDF

The existence of a well-defined yield stress, where a macroscopic crystal begins to plastically flow, has been a basic observation in materials science. In contrast with macroscopic samples, in microcrystals the strain accumulates in random bursts, which makes controlled plastic formation difficult. Here we study by 2D and 3D simulations the plastic deformation of submicron objects under increasing stress.

View Article and Find Full Text PDF

Because of their long lifetimes, the ω and ϕ mesons are the ideal candidates for the study of possible modifications of the in-medium meson-nucleon interaction through their absorption inside the nucleus. During the E01-112 experiment at the Thomas Jefferson National Accelerator Facility, the mesons were photoproduced from 2H, C, Ti, Fe, and Pb targets. This Letter reports the first measurement of the ratio of nuclear transparencies for the e+e- channel.

View Article and Find Full Text PDF
Article Synopsis
  • The study measures the differential cross section for the gamman --> pi- p process using the CLAS detector at Jefferson Lab, focusing on photon energies from 1.0 to 3.5 GeV and pion center-of-mass angles between 50 and 115 degrees.
  • The researchers confirm a significant enhancement at a center-of-mass energy of 2.1 GeV at an angle of 90 degrees and observe a rapid decrease in the cross section about 400 MeV after this enhancement.
  • Data indicates that the observed enhancement has an angular dependence, with variations noted as the angle changes from 70 to 105 degrees in relation to the suggested scaling region.
View Article and Find Full Text PDF

The neutron elastic magnetic form factor was extracted from quasielastic electron scattering on deuterium over the range Q;{2}=1.0-4.8 GeV2 with the CLAS detector at Jefferson Lab.

View Article and Find Full Text PDF

A search for exotic mesons in the pi;{+}pi;{+}pi;{-} system photoproduced by the charge exchange reaction gammap-->pi;{+}pi;{+}pi;{-}(n) was carried out by the CLAS Collaboration at Jefferson Lab. A tagged-photon beam with energies in the 4.8 to 5.

View Article and Find Full Text PDF

We report on the results of the first measurement of exclusive f_{0}(980) meson photoproduction on protons for E_{gamma}=3.0-3.8 GeV and -t=0.

View Article and Find Full Text PDF

The beam-spin asymmetries in the hard exclusive electroproduction of photons on the proton (e p-->epgamma) were measured over a wide kinematic range and with high statistical accuracy. These asymmetries result from the interference of the Bethe-Heitler process and of deeply virtual Compton scattering. Over the whole kinematic range (x(B) from 0.

View Article and Find Full Text PDF

We examine the results of two measurements by the CLAS collaboration, one of which claimed evidence for a Theta(+) pentaquark, while the other found no such evidence. The unique feature of these two experiments was that they were performed with the same experimental setup. Using a Bayesian analysis, we find that the results of the two experiments are in fact compatible with each other, but that the first measurement did not contain sufficient information to determine unambiguously the existence of a Theta(+).

View Article and Find Full Text PDF

The photoproduction of vector mesons on various nuclei has been studied using the CLAS detector at Jefferson Laboratory. The vector mesons, rho, omega, and varphi, are observed via their decay to e;{+}e;{-}, in order to reduce the effects of final-state interactions in the nucleus. Of particular interest are possible in-medium effects on the properties of the rho meson.

View Article and Find Full Text PDF

Under stress, many crystalline materials exhibit irreversible plastic deformation caused by the motion of lattice dislocations. In plastically deformed microcrystals, internal dislocation avalanches lead to jumps in the stress-strain curves (strain bursts), whereas in macroscopic samples plasticity appears as a smooth process. By combining three-dimensional simulations of the dynamics of interacting dislocations with statistical analysis of the corresponding deformation behavior, we determined the distribution of strain changes during dislocation avalanches and established its dependence on microcrystal size.

View Article and Find Full Text PDF

The reaction 2H(e,e'p)n has been studied with full kinematic coverage for photon virtuality 1.75 View Article and Find Full Text PDF

The longitudinal target-spin asymmetry AUL for the exclusive electroproduction of high-energy photons was measured for the first time in ep-->e;'pgamma. The data have been accumulated at JLab with the CLAS spectrometer using 5.7 GeV electrons and a longitudinally polarized NH3 target.

View Article and Find Full Text PDF

We report a new measurement of the exclusive electroproduction reaction gamma(*)p-->pi(0)p to explore the evolution from soft nonperturbative physics to hard processes via the Q(2) dependence of the magnetic (M(1+)), electric (E(1+)), and scalar (S(1+)) multipoles in the N-->Delta transition. 9000 differential cross section data points cover W from threshold to 1.4 GeV/c(2), 4pi center-of-mass solid angle, and Q(2) from 3 to 6 GeV(2)/c(2), the highest yet achieved.

View Article and Find Full Text PDF

The reaction gammap --> pK+K- was studied at Jefferson Lab with photon energies from 1.8 to 3.8 GeV using a tagged photon beam.

View Article and Find Full Text PDF

For the first time, the reaction gammad-->DeltanK+ has been analyzed in order to search for the exotic pentaquark baryon Theta+(1540). The data were taken at Jefferson Laboratory, using the Hall-B tagged-photon beam of energy between 0.8 and 3.

View Article and Find Full Text PDF

A search for the Theta+ in the reaction gammad --> pK-K+n was completed using the CLAS detector at Jefferson Lab. A study of the same reaction, published earlier, reported the observation of a narrow Theta+ resonance. The present experiment, with more than 30 times the integrated luminosity of our earlier measurement, does not show any evidence for a narrow pentaquark resonance.

View Article and Find Full Text PDF

The ratios of inclusive electron scattering cross sections of 4He, 12C, and 56Fe to 3He have been measured at 1 < xB <. At Q2 > 1.4 GeV2, the ratios exhibit two separate plateaus, at 1.

View Article and Find Full Text PDF