Purpose: Advances in fetal fraction amplification in prenatal cell-free DNA screening now allow for high-resolution detection of copy-number variants (CNVs). However, approaches to interpreting CNVs as part of a primary screen are still evolving and require consensus. Here, we present a conservative, patient-centered framework for reporting fetal CNVs.
View Article and Find Full Text PDFPurpose: Clinically significant copy-number variants (CNVs) occur in 1% to 2% of pregnancies and are difficult to detect via prenatal cell-free DNA (cfDNA) screening because of the low fraction of fetal-derived cfDNA in maternal plasma. Here, we use fetal fraction amplification (FFA) and improved computational algorithms to enhance the resolution and sensitivity of CNV detection.
Methods: We implemented and characterized the performance of a hidden Markov model that identifies fetal CNVs.
Objective: 22q11.2 deletion syndrome (DS) is a serious condition with a range of features. The small microdeletion causing 22q11.
View Article and Find Full Text PDFMGA (Max-gene associated) is a dual-specificity transcription factor that negatively regulates MYC-target genes to inhibit proliferation and promote differentiation. Loss-of-function mutations in MGA have been commonly identified in several hematological neoplasms, including acute myeloid leukemia (AML) with RUNX1::RUNX1T1, however, very little is known about the impact of these MGA alterations on normal hematopoiesis or disease progression. We show that representative MGA mutations identified in patient samples abolish protein-protein interactions and transcriptional activity.
View Article and Find Full Text PDFMonosomy 7 and del(7q) are among the most common and poorly understood genetic alterations in myelodysplastic neoplasms and acute myeloid leukemia. Chromosome band 7q22 is a minimally deleted segment in myeloid malignancies with a del(7q). However, the rarity of "second hit" mutations supports the idea that del(7q22) represents a contiguous gene syndrome.
View Article and Find Full Text PDFRecent genomic studies in adult and pediatric acute myeloid leukemia (AML) demonstrated recurrent in-frame tandem duplications (TD) in exon 13 of upstream binding transcription factor (UBTF). These alterations, which account for approximately 4.3% of AML in childhood and about 3% in adult AML aged <60 years of age, are subtype-defining and associated with poor outcomes.
View Article and Find Full Text PDFRecent studies on pediatric acute myeloid leukemia (pAML) have revealed pediatric-specific driver alterations, many of which are underrepresented in the current classification schemas. To comprehensively define the genomic landscape of pAML, we systematically categorized 887 pAML into 23 mutually distinct molecular categories, including new major entities such as UBTF or BCL11B, covering 91.4% of the cohort.
View Article and Find Full Text PDFRecent genomic studies in adult and pediatric acute myeloid leukemia (AML) demonstrated recurrent in-frame tandem duplications (TD) in exon 13 of upstream binding transcription factor (). These alterations, which account for ~4.3% of AMLs in childhood and up to 3% in adult AMLs under 60, are subtype-defining and associated with poor outcomes.
View Article and Find Full Text PDFMGA (Max-gene associated) is a dual-specificity transcription factor that negatively regulates MYC-target genes to inhibit proliferation and promote differentiation. Loss-of-function mutations in have been commonly identified in several hematological neoplasms, including acute myeloid leukemia (AML) with however, very little is known about the impact of these alterations on normal hematopoiesis or disease progression. We show that representative mutations identified in patient samples abolish protein-protein interactions and transcriptional activity.
View Article and Find Full Text PDFWhile basal metabolic rate (BMR) scales proportionally with body mass (M ), it remains unclear whether the relationship differs between mammals from aquatic and terrestrial habitats. We hypothesized that differences in BMR allometry would be reflected in similar differences in scaling of O delivery pathways through the cardiorespiratory system. We performed a comparative analysis of BMR across 63 mammalian species (20 aquatic, 43 terrestrial) with a M range from 10 kg to 5318 kg.
View Article and Find Full Text PDFOncogenic fusions formed through chromosomal rearrangements are hallmarks of childhood cancer that define cancer subtype, predict outcome, persist through treatment, and can be ideal therapeutic targets. However, mechanistic understanding of the etiology of oncogenic fusions remains elusive. Here we report a comprehensive detection of 272 oncogenic fusion gene pairs by using tumor transcriptome sequencing data from 5190 childhood cancer patients.
View Article and Find Full Text PDFObjective: To examine the extent to which sex chromosomes are included in current noninvasive prenatal testing (NIPT) and the reporting practices with respect to fetal chromosomal sex and sex chromosome aberrations (SCAs), in addition to an update on the general implementation of NIPT.
Method: A questionnaire addressing the research objectives was distributed by email to fetal medicine and clinical genetics experts in Asia, Australia, Europe and the USA.
Results: Guidelines on NIPT are available in the majority of the included countries.
Traditional collimators typically require large optics and/or long pathlengths which makes miniaturization difficult. Carbon nanotube templated microfabrication offers a solution to pattern small 3D structures, such as parallel hole collimators. Here we present the characterization of a carbon nanotube parallel hole collimator design and its efficacy in visible and short wavelength infrared light.
View Article and Find Full Text PDFSAMD9 and SAMD9L germline mutations have recently emerged as a new class of predispositions to pediatric myeloid neoplasms. Patients commonly have impaired hematopoiesis, hypocellular marrows, and a greater risk of developing clonal chromosome 7 deletions leading to MDS and AML. We recently demonstrated that expressing SAMD9 or SAMD9L mutations in hematopoietic cells suppresses their proliferation and induces cell death.
View Article and Find Full Text PDFUnlabelled: The genetics of relapsed pediatric acute myeloid leukemia (AML) has yet to be comprehensively defined. Here, we present the spectrum of genomic alterations in 136 relapsed pediatric AMLs. We identified recurrent exon 13 tandem duplications (TD) in upstream binding transcription factor (UBTF) in 9% of relapsed AML cases.
View Article and Find Full Text PDFPurpose: Of 86,902 prenatal genome-wide cell-free DNA (cfDNA) screening tests, 4,121 were positive for a chromosome abnormality. This study examines 490 cases screen-positive for one or more subchromosomal copy-number variants (CNV) from genome-wide cfDNA screening.
Methods: Cases positive for one or more subchromosomal CNV from genome-wide cfDNA screening and diagnostic outcomes were compiled.
Lineage-ambiguous leukemias are high-risk malignancies of poorly understood genetic basis. Here, we describe a distinct subgroup of acute leukemia with expression of myeloid, T lymphoid, and stem cell markers driven by aberrant allele-specific deregulation of , a master transcription factor responsible for thymic T-lineage commitment and specification. Mechanistically, this deregulation was driven by chromosomal rearrangements that juxtapose to superenhancers active in hematopoietic progenitors, or focal amplifications that generate a superenhancer from a noncoding element distal to .
View Article and Find Full Text PDFPediatric therapy-related myeloid neoplasms (tMN) occur in children after exposure to cytotoxic therapy and have a dismal prognosis. The somatic and germline genomic alterations that drive these myeloid neoplasms in children and how they arise have yet to be comprehensively described. We use whole exome, whole genome, and/or RNA sequencing to characterize the genomic profile of 84 pediatric tMN cases (tMDS: n = 28, tAML: n = 56).
View Article and Find Full Text PDFSelf-assembly nanofabrication is increasingly appealing in complex nanostructures, as it requires fewer materials and has potential to reduce feature sizes. The use of DNA to control nanoscale and microscale features is promising but not fully developed. In this work, we study self-assembled DNA nanotubes to fabricate gold nanowires for use as interconnects in future nanoelectronic devices.
View Article and Find Full Text PDF