Publications by authors named "Weston Miller"

Background: X-linked myotubular myopathy (XLMTM) is a rare, life-threatening congenital muscle disease caused by mutations in the MTM1 gene that result in profound muscle weakness, significant respiratory insufficiency, and high infant mortality. There is no approved disease-modifying therapy for XLMTM. Resamirigene bilparvovec (AT132; rAAV8-Des-hMTM1) is an investigational adeno-associated virus (AAV8)-mediated gene replacement therapy designed to deliver MTM1 to skeletal muscle cells and achieve long-term correction of XLMTM-related muscle pathology.

View Article and Find Full Text PDF

Background: X-linked myotubular myopathy is a rare, life-threatening, congenital muscle disease observed mostly in males, which is caused by mutations in MTM1. No therapies are approved for this disease. We aimed to assess the safety and efficacy of resamirigene bilparvovec, which is an adeno-associated viral vector serotype 8 delivering human MTM1.

View Article and Find Full Text PDF

Background: X-linked myotubular myopathy (XLMTM) is a rare, life-threatening congenital myopathy with multisystem involvement, often requiring invasive ventilator support, gastrostomy tube feeding, and wheelchair use. Understanding healthcare resource utilization in patients with XLMTM is important for development of targeted therapies but data are limited.

Methods: We analyzed individual medical codes as governed by Healthcare Common Procedure Coding System, Current Procedural Terminology, and International Classification of Diseases, 10th Revision (ICD-10) for a defined cohort of XLMTM patients within a US medical claims database.

View Article and Find Full Text PDF

Zinc-finger nuclease (ZFN)-based in vivo genome editing is a novel treatment that can potentially provide lifelong protein replacement with single intravenous administration. Three first-in-human open-label ascending single-dose phase 1/2 studies were performed in parallel (starting November 2017) primarily to assess safety and tolerability of ZFN in vivo editing therapy in mucopolysaccharidosis I (MPS I) (n = 3), MPS II (n = 9), and hemophilia B (n = 1). Treatment was well tolerated with no serious treatment-related adverse events.

View Article and Find Full Text PDF

Background: X-linked myotubular myopathy (XLMTM) is a life-threatening congenital myopathy that, in most cases, is characterized by profound muscle weakness, respiratory failure, need for mechanical ventilation and gastrostomy feeding, and early death.

Objective: We aimed to characterize the neuromuscular, respiratory, and extramuscular burden of XLMTM in a prospective, longitudinal study.

Methods: Thirty-four participants < 4 years old with XLMTM and receiving ventilator support enrolled in INCEPTUS, a prospective, multicenter, non-interventional study.

View Article and Find Full Text PDF

The only treatment currently available for patients with severe infantile osteopetrosis is hematopoietic cell transplantation (HCT). HCT-related toxicity and mortality risks typically preclude its use in non-infantile patients, and other therapies are needed for these patients who have significant disease-related morbidity. Interferon gamma-1b is currently approved by the U.

View Article and Find Full Text PDF

X-linked myotubular myopathy (XLMTM) is a rare, life-threatening congenital myopathy characterized by profound skeletal muscle weakness, respiratory distress, and motor dysfunction. However, pathology is not limited to muscle and can be associated with life-threatening hepatic peliosis. Hepatobiliary disease has been reported in up to 17% of XLMTM patients but has not been extensively characterized.

View Article and Find Full Text PDF

Immune-mediated cytopenias (IMC)-isolated or combined hemolytic anemia, thrombocytopenia, or neutropenia-are increasingly recognized as serious complications after allogeneic hematopoietic cell transplantation (HCT) for nonmalignant disorders (NMD). However, IMC incidence, duration, response to therapy, and risk factors are not well defined. This retrospective chart review identified cases of IMC with serologic confirmation among patients who underwent HCT for NMD at a single institution between 2010 and 2017.

View Article and Find Full Text PDF

We report the outcomes of cord blood transplantation (CBT) with a busulfan (Bu) pharmacokinetics-targeted myeloablative conditioning regimen in 97 children with Hurler syndrome (HS) performed between 2004 and 2016. The median age at CBT was 10.8 months (range, 0.

View Article and Find Full Text PDF

X-linked adrenoleukodystrophy (ALD) is a neurodegenerative peroxisomal disorder with variable clinical phenotypes. Childhood cerebral ALD (CCALD) is at the most severe end of the disease spectrum. In CCALD, the clinical manifestations include increasing deficits in behavior, vision, hearing, coordination, and motor function, as well as seizures.

View Article and Find Full Text PDF

Objective: To quantify benchmark treatment outcomes that may be enabled by newborn screening surveillance for X-linked adrenoleukodystrophy (ALD), we report neurocognitive, neuropsychiatric, and MRI change for boys who underwent hematopoietic stem cell transplant (HSCT) at initial stages of demyelination, prior to neurocognitive signs of disease.

Methods: Retrospective chart review identified 36 patients whose cerebral ALD was detected and treated early, with lesion severity less than 5 on the ALD-specific MRI scoring system. Median age at transplant was 7.

View Article and Find Full Text PDF

Cerebral adrenoleukodystrophy is an inflammatory demyelinating condition that is the result of a mutation in the X-linked ABCD1 gene, a peroxisomal very long chain fatty acid transporter. Although mutations in this gene result in adrenal insufficiency in the majority of affected individuals, 40% of those affected develop the demyelinating cerebral form, cerebral adrenoleukodystrophy (CALD). CALD is characterized by imaging findings of demyelination and contrast enhancement on magnetic resonance imaging (MRI).

View Article and Find Full Text PDF

Hematopoietic stem cell transplantation (HCT) is a primary treatment for various inherited metabolic disorders (IMDs). Achieving stable and sustained engraftment while minimizing transplantation-related morbidity and mortality is critical to optimizing outcomes for IMDs. Traditional regimens have used myeloablative approaches, primarily busulfan and cyclophosphamide (BuCy), which is associated with significant regimen-related toxicity.

View Article and Find Full Text PDF

Allogeneic hematopoietic cell transplantation (HCT) benefits children with Hurler syndrome (MPS-IH). However, survivors remain burdened by substantial MPS-IH related residual disease. We studied the feasibility, safety and biochemical impact of augmentative recombinant intravenous enzyme replacement therapy (IV-ERT) post transplantation.

View Article and Find Full Text PDF

Background: Mucopolysaccharidosis I (MPS IH) is a lysosomal storage disease treated with hematopoietic cell transplantation (HCT) because it stabilizes cognitive deterioration, but is insufficient to alleviate all somatic manifestations. Intravenous laronidase improves somatic burden in attenuated MPS I. It is unknown whether laronidase can improve somatic disease following HCT in MPS IH.

View Article and Find Full Text PDF

Cerebral adrenoleukodystrophy (cALD) is an inflammatory neurodegenerative disease associated with mutation of the ABCD1 gene. Proteomic analysis of cerebral spinal fluid (CSF) from young males with active cALD revealed markers of inflammation including APOE4. APOE4 genotype has been associated with an inferior prognosis following acute and chronic neurologic injury.

View Article and Find Full Text PDF

Background: Deficiency in the enzyme β-mannosidase was described over three decades ago. Although rare in occurrence, the presentation of childhood-onset β-mannosidase deficiency consists of hypotonia in the newborn period followed by global development delay, behavior problems, and intellectual disability. No effective pharmacologic treatments have been available.

View Article and Find Full Text PDF

Minnesota became the fourth state to begin newborn screening (NBS) for X-linked adrenoleukodystrophy (X-ALD) in 2017. As there is limited retrospective data available on NBS for X-ALD, we analyzed Minnesota's NBS results from the first year of screening. C26:0 lysophosphatidylcholine (C26:0-LPC) screening results of 67,836 infants and confirmatory testing (ABCD1 gene and serum VLCFA analysis) for screen positives were obtained.

View Article and Find Full Text PDF

Purpose: Abnormalities in cerebrospinal fluid (CSF) have been reported in Hurler syndrome, a fatal neurodegenerative lysosomal disorder. While no biomarker has predicted neurocognitive response to treatment, one of these abnormalities, glycosaminoglycan nonreducing ends (NREs), holds promise to monitor therapeutic efficacy. A trial of intrathecal enzyme replacement therapy (ERT) added to standard treatment enabled tracking of CSF abnormalities, including NREs.

View Article and Find Full Text PDF

Adrenoleukodystrophy (ALD) is caused by mutations within the X-linked gene, resulting in the inability to transport acylated very long chain fatty acids (VLCFAs) into the peroxisome for degradation. VLCFAs subsequently accumulate in tissues, including the central nervous system. Up to 40% of boys develop a severe progressive demyelinating form of ALD, cerebral ALD, resulting in regions of demyelination observed on brain magnetic resonance imaging that are associated with a "garland ring" of gadolinium contrast enhancement.

View Article and Find Full Text PDF

Cerebral adrenoleukodystrophy (CALD) is a rapidly progressing, often fatal neurodegenerative disease caused by mutations in the ABCD1 gene, resulting in deficiency of ALD protein. Clinical benefit has been reported following allogeneic hematopoietic stem cell transplantation (HSCT). We conducted a large multicenter retrospective chart review to characterize the natural history of CALD, to describe outcomes after HSCT, and to identify predictors of treatment outcomes.

View Article and Find Full Text PDF

Allogeneic blood or marrow transplantation (BMT) is currently considered the standard of care for patients with specific inborn errors of metabolism (IEM). However, there is a paucity of studies describing long-term survival and cause-specific late mortality after BMT in these patients with individual types of IEM. We studied 273 patients who had survived ≥2 years after allogeneic BMT for IEM performed between 1974 and 2014.

View Article and Find Full Text PDF

Objective: Hematopoietic stem cell transplantation (HSCT) is the only treatment known to slow or halt inflammatory demyelination among boys with the cerebral form of X-linked adrenoleukodystrophy (cALD), a devastating childhood condition affecting the central nervous system. HSCT can lead to a range of adverse outcomes including fatality. Previous studies have examined the potential predictors of post-HSCT survival and neurologic functioning.

View Article and Find Full Text PDF

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

View Article and Find Full Text PDF

Purpose: Early treatment is critical for mucopolysaccharidosis type I (MPS I), justifying its incorporation into newborn screening. Enzyme replacement therapy (ERT) treats MPS I, yet presumptions that ERT cannot penetrate the blood-brain barrier (BBB) support recommendations that hematopoietic cell transplantation (HCT) treat the severe, neurodegenerative form (Hurler syndrome). Ethics precludes randomized comparison of ERT with HCT, but insight into this comparison is presented with an international cohort of patients with Hurler syndrome who received long-term ERT from a young age.

View Article and Find Full Text PDF