Publications by authors named "Westhead E"

This study focused on quantifying the abundance of microplastics within the surface water of the River Thames, UK. Ten sites in eight areas were sampled within the tidal Thames, starting from Teddington and ending at Southend-on-Sea. Three litres of water was collected monthly at high tide from land-based structures from each site from May 2019 to May 2021.

View Article and Find Full Text PDF

In April 2020, the Covid-19 pandemic changed human behaviour worldwide, creating an increased demand for plastic, especially single-use plastic in the form of personal protective equipment. The pandemic also provided a unique situation for plastic pollution studies, especially microplastic studies. This study looks at the impact of the Covid-19 pandemic and three national lockdowns on microplastic abundance at five sites along the river Thames, UK, compared to pre-Covid-19 levels.

View Article and Find Full Text PDF

Microplastic pollution is widely studied; however, research into the effects of large-scale firework displays and the impact on surrounding waterways appears to be lacking. This study is potentially the first to look at microplastic abundance in rivers after a major firework event. To assess the impact of the 2020 New Year's firework display in London, a 3 litre water sample was collected over nine consecutive days at Westminster on the River Thames.

View Article and Find Full Text PDF

The colligative properties of ATP and catecholamines demonstrated in vitro are thought to be responsible for the extraordinary accumulation of solutes inside chromaffin cell secretory vesicles, although this has yet to be demonstrated in living cells. Because functional cells cannot be deprived of ATP, we have knocked down the expression of the vesicular nucleotide carrier, the VNUT, to show that a reduction in vesicular ATP is accompanied by a drastic fall in the quantal release of catecholamines. This phenomenon is particularly evident in newly synthesized vesicles, which we show are the first to be released.

View Article and Find Full Text PDF

An alternative to land spreading of manure is to grow crops of algae on the N and P present in the manure and convert manure N and P into algal biomass. The objective of this study was to evaluate the fertilizer value of dried algal biomass that had been grown using anaerobically digested dairy manure. Results from a flask study using two soils amended with algal biomass showed that 3% of total algal nitrogen (N) was present as plant available N at day 0.

View Article and Find Full Text PDF

Extracellular ATP triggers catecholamine secretion from PC12 cells by activating ionotropic purine receptors. Repeated stimulation by ATP leads to habituation of the secretory response. In this paper, we use amperometric detection to monitor the habituation of PC12 cells to multiple stimulations of ATP or its agonist.

View Article and Find Full Text PDF

ATP, an established neurotransmitter, causes elevation of cytosolic Ca2+ and catecholamine secretion when applied to chromaffin cells in the intact adrenal gland. The ATP-induced rise in Ca2+ is due both to release from internal stores and to entry across the plasma membrane. The latter source of Ca2+ causes secretion; the primary role of Ca2+ released from internal stores remains undetermined.

View Article and Find Full Text PDF

Extracellular ATP is shown to induce catecholamine secretion in bovine chromaffin cells. Our data indicate that cells in culture gradually increase their response to ATP, and we have separated freshly isolated cells on a density gradient and found that the lighter cells develop a much stronger response to ATP than do the heavier cells. To see if the ATP sensitivity is physiological, we have perfused intact adrenal glands.

View Article and Find Full Text PDF

The Na+/Ca2+ exchanger is an important element in the maintenance of calcium homeostasis in bovine chromaffin cells. The Na+/Ca2+ exchanger from other cell types has been extensively studied, but little is known about its regulation in the cell. We have investigated the role of reversible protein phosphorylation in the activity of the Na+/Ca2+ exchanger of these cells.

View Article and Find Full Text PDF

Desensitization or habituation to repeated or prolonged stimulation is a common property of secretory cells. Phosphorylation of receptors mediates some desensitization processes, but the relationship of phosphorylation to desensitization at postreceptor sites is not well understood. We have tested the effect of protein phosphorylation on desensitization in bovine chromaffin cells.

View Article and Find Full Text PDF

The biochemical mechanisms involved in neurite outgrowth in response to nerve growth factor (NGF) have yet to be completely resolved. Several recent studies have demonstrated that protein kinase activity plays a critical role in neurite outgrowth. However, little information exists about the role of protein phosphatases in the process.

View Article and Find Full Text PDF

We reported earlier that adenine nucleotides and adenosine inhibit acetylcholine-induced catecholamine secretion from bovine adrenal medulla chromaffin cells. In this article, we used an adenosine analogue, N6-L-phenylisopropyladenosine (PIA), to study the mechanism underlying inhibition of catecholamine secretion by adenosine. PIA inhibits secretion induced by a nicotinic agonist, 1,1-dimethyl-4-phenylpiperazinium, or by elevated external K+.

View Article and Find Full Text PDF

Hormone secretion from chromaffin cells is evoked by calcium influx through voltage-dependent channels in the plasma membrane. Previous studies have shown that ATP, cosecreted with catecholamines from chromaffin granules, can modulate the secretion resulting from depolarization by nicotinic agonists. The immediate effect of ATP is to enhance secretion; more prolonged exposure to the nucleotide results in inhibition.

View Article and Find Full Text PDF

A fundamental process in neurosecretion is desensitization, or a declining response to a stimulus. The response of chromaffin cells to continuous nicotinic stimulation, secretion of catecholamines, desensitizes within a few minutes. The neuropeptide substance P (SP) has been reported to prevent desensitization in culture dish experiments and to enhance desensitization in patch clamp studies.

View Article and Find Full Text PDF

Bovine adrenal medullary cells, cultured on quartz plates, were superfused with buffer to which pulses of stimulant were added. Cytosolic Ca2+ was measured by the fura-2 fluorescence method and the simultaneously released catecholamine was measured electrochemically. When stimulant concentrations were adjusted to given equivalent elevations of cytosolic Ca2+, secretion depended entirely on whether Ca2+ came from internal stores or from the extracellular medium.

View Article and Find Full Text PDF

The role of various intracellular signals and of their possible interactions in the control of neurotransmitter release was investigated in PC12 cells. To this purpose, agents that affect primarily the cytosolic concentration of Ca2+, [Ca2+]i (ionomycin, high K+), agents that affect cyclic AMP concentrations (forskolin; the adenosine analogue phenylisopropyladenosine; clonidine) and activators of protein kinase C (phorbol esters) were applied alone or in combination to either growing chromaffin-like PC12-cells, or to neuron-like PC12+ cells differentiated by treatment with NGF (nerve growth factor). In addition, the release effects of muscarinic-receptor stimulation (which causes increase in [Ca2+]i, activation of protein kinase C and decrease in cyclic AMP) were investigated.

View Article and Find Full Text PDF

Cells of the adrenal medulla release not only catecholamines but also high concentrations of neuropeptides and nucleotides. Chromaffin cells, like many neuronal cells, have a diversity of receptors: adrenergic receptors, peptide receptors, histamine receptors, and dopamine receptors. We recently reported that these cells have nucleotide receptors that can mediate inhibition of the secretory response.

View Article and Find Full Text PDF

ATP, ADP, and adenosine have been found to inhibit acetylcholine-stimulated secretion from isolated cells of bovine adrenal medulla (chromaffin cells). Maximal inhibition is approximately 30% under the conditions studied; half-maximal inhibition occurs at nucleotide concentration in the micromolar range. Cells must be incubated with ATP for approximately 90 s for maximal inhibition, but inhibition by adenosine occurs much faster, an observation suggesting the possibility that ATP and ADP exert their effect after being converted to adenosine.

View Article and Find Full Text PDF

The major Mn2+-activated phosphoprotein phosphatase of the human erythrocyte has been purified to homogeneity from the cell hemolysate. It is sensitive to both inhibitors 1 and 2 of rabbit skeletal muscle, preferentially dephosphorylates the beta subunit of the phosphorylase kinase, and dephosphorylates a broad range of substrates including phosphorylase a, p-nitro-phenyl phosphate, phosphocasein, the regulatory subunit of cyclic AMP-dependent protein kinase, and both spectrin (Km = 10 microM) and pyruvate kinase (Km = 18 microM) purified from the human erythrocyte. The purified enzyme is stimulated by Mn2+ and to a lesser extent by higher concentrations of Mg2+.

View Article and Find Full Text PDF

Bovine adrenal medullary cells have been cultured on microbeads which are placed in a low-volume flow system for measurements of stimulation-response parameters. Electronically controlled stream switching allows stimulation of cells with pulse lengths from 1 s to many minutes; pulses may be repeated indefinitely. Catecholamines secreted are detected by an electrochemical detector downstream from the cells.

View Article and Find Full Text PDF