Publications by authors named "Westerlo E"

Article Synopsis
  • Dimeric nicotinamide nucleotide transhydrogenase (NNT) is a crucial enzyme located in the mitochondrial inner membrane, involved in converting NADP/NADH to NADPH/NAD while facilitating proton influx, but its specific roles and regulation in health and diseases like cancer are still not thoroughly understood.! -
  • Research on NNT has been conducted through studies on gene mutations in specific models (like GCCD4 patients and C57BL/6J mice) and effects of NNT alterations in cancer cells, revealing both common and unique functional issues, yet information on NNT's physiological role in humans remains limited.! -
  • To advance understanding of NNT's functions and effects in various conditions, future
View Article and Find Full Text PDF
Article Synopsis
  • Mitochondrial morphology and membrane potential are key indicators of mitochondrial health, and these can be analyzed using fluorescent dyes in living cells.
  • The study focuses on using TMRM and Mitotracker Green FM to assess both mitochondrial shape and membrane potential in primary human skin fibroblasts.
  • An integrated protocol is provided for quantifying these parameters through epifluorescence microscopy, specifically highlighting its effectiveness with large, flat cells at high magnification.
View Article and Find Full Text PDF

Mitochondrial membrane potential (Δψ) and morphology are considered key readouts of mitochondrial functional state. This morphofunction can be studied using fluorescent dyes ("probes") like tetramethylrhodamine methyl ester (TMRM) and Mitotrackers (MTs). Although these dyes are broadly used, information comparing their performance in mitochondrial morphology quantification and Δψ-sensitivity in the same cell model is still scarce.

View Article and Find Full Text PDF

Macromolecules of various sizes induce crowding of the cellular environment. This crowding impacts on biochemical reactions by increasing solvent viscosity, decreasing the water-accessible volume and altering protein shape, function, and interactions. Although mitochondria represent highly protein-rich organelles, most of these proteins are somehow immobilized.

View Article and Find Full Text PDF

Attachment of cargo molecules to lipophilic triphenylphosphonium (TPP) cations is a widely applied strategy for mitochondrial targeting. We previously demonstrated that the vitamin E-derived antioxidant Trolox increases the levels of active mitochondrial complex I (CI), the first complex of the electron transport chain (ETC), in primary human skin fibroblasts (PHSFs) of Leigh Syndrome (LS) patients with isolated CI deficiency. Primed by this finding, we here studied the cellular effects of mitochondria-targeted Trolox (MitoE10), mitochondria-targeted ubiquinone (MitoQ10) and their mitochondria-targeting moiety decylTPP (C-TPP).

View Article and Find Full Text PDF

Following brief exposure to endogenous atherogenic particles, such as oxidized low-density lipoprotein (oxLDL), monocytes/macrophages can adopt a long-term pro-inflammatory phenotype, which is called trained immunity. This mechanism might contribute to the chronic low-grade inflammation that characterizes atherosclerosis. In this study, we aim to elucidate immunometabolic pathways that drive oxLDL-induced trained immunity.

View Article and Find Full Text PDF

Phytochemical antioxidants like gallic and caffeic acid are constituents of the normal human diet that display beneficial health effects, potentially via activating stress response pathways. Using primary human skin fibroblasts (PHSFs) as a model, we here investigated whether such pathways were induced by novel mitochondria-targeted variants of gallic acid (AntiOxBEN) and caffeic acid (AntiOxCIN). Both molecules reduced cell viability with similar kinetics and potency (72 h incubation, IC50 ~23 μM).

View Article and Find Full Text PDF

Heparan sulfate (HS) is a linear polysaccharide with high structural diversity. Different HS epitopes have been detected and localized using single chain variable fragment (scFv) antibodies from a 'single pot' phage display library containing a randomized complementarity determining region of the heavy chain (CDR3). In this study, we created a new library containing anti-HS scFvs that all harbor a dp-38 heavy chain segment where the CDR3 region was engineered to contain the XBBXBX heparin binding consensus site (X = any amino acid, B = R, K or H).

View Article and Find Full Text PDF

NGLY1 encodes the enzyme N-glycanase that is involved in the degradation of glycoproteins as part of the endoplasmatic reticulum-associated degradation pathway. Variants in this gene have been described to cause a multisystem disease characterized by neuromotor impairment, neuropathy, intellectual disability, and dysmorphic features. Here, we describe four patients with pathogenic variants in NGLY1.

View Article and Find Full Text PDF

Glycosaminoglycans are important for cell signaling and therefore for proper embryonic development and adult homeostasis. Expressions of genes involved in proteoglycan/glycosaminoglycan (GAG) metabolism and of genes coding for growth factors known to bind GAGs were analyzed during skin development by microarray analysis and real time quantitative PCR. GAG related genes were organized in six categories based on their role in GAG homeostasis, (1) production of precursor molecules, (2) production of core proteins, (3) synthesis of the linkage region, (4) polymerization, (5) modification, and (6) degradation of the GAG chain.

View Article and Find Full Text PDF

Technologies to sequence nucleic acids/proteins are widely available, but straightforward methodologies to sequence complex polysaccharides are lacking. We here put forward a strategy to sequence glycosaminoglycans, long linear polysaccharides involved in many biochemical processes. The method is based on the covalent immobilization and (immuno)chemical characterization of only those size-separated saccharides that harbor the original reducing end of the full-length chain.

View Article and Find Full Text PDF

The ability to characterize alterations in heparan sulfate (HS) structure during development or as a result of loss or mutation of one or more components of the HS biosynthetic pathway is essential for broad understanding of the effects these changes may have on cell/tissue function. The use of anti-HS antibodies provides an opportunity to study HS chain composition in situ, with a multitude of different antibodies having been generated that recognize subtle differences in HS patterning, with the number and positioning of sulfate groups influencing antibody binding affinity. Flow cytometry is a valuable technique to enable the rapid characterization of the changes in HS-specific antibody binding in situ, allowing multiple cell types to be directly compared.

View Article and Find Full Text PDF

HS (heparan sulfate) is a long linear polysaccharide, variably modified by epimerization and sulfation reactions, and is organized into different domains defined by the extent of modification. To further elucidate HS structural organization, the relative position of different HS structures, identified by a set of phage-display-derived anti-HS antibodies, was established. Two strategies were employed: inhibition of HS biosynthesis using 4-deoxy-GlcNAc, followed by resynthesis, and limited degradation of HS using heparinases.

View Article and Find Full Text PDF

Heparan sulfate (HS), a long linear polysaccharide, is implicated in various steps of tumorigenesis, including angiogenesis. We successfully interfered with HS biosynthesis using a peracetylated 4-deoxy analogue of the HS constituent GlcNAc and studied the compound's metabolic fate and its effect on angiogenesis. The 4-deoxy analogue was activated intracellularly into UDP-4-deoxy-GlcNAc, and HS expression was inhibited up to ∼96% (IC50 = 16 μM).

View Article and Find Full Text PDF

Autotaxin (ATX) is a secreted lysophospholipase D that generates the lipid mediator lysophosphatidic acid (LPA), playing a key role in diverse physiological and pathological processes. ATX exists in distinct splice variants, but isoform-specific functions remain elusive. Here we characterize the ATXα isoform, which differs from the canonical form (ATXβ) in having a 52-residue polybasic insertion of unknown function in the catalytic domain.

View Article and Find Full Text PDF

Glycosaminoglycans (GAGs) are long, anionic polysaccharides involved in many basic aspects of mammalian physiology and pathology. Here we describe a method to extract GAGs from formalin-fixed, paraffin-embedded tissues and found that they are structurally comparable with GAGs extracted from frozen tissues. We employed this method to structurally characterize GAGs in tissues, including laser-dissected layers of skin and pathological specimens.

View Article and Find Full Text PDF

Glycosaminoglycans, like heparin, are frequently incorporated in biomaterials because of their capacity to bind and store growth factors and because of their hydrating properties. Heparin is also often used in biomaterials for its anticoagulant activity. Analysis of biomaterial-bound heparin is challenging because most assays are based on heparin in solution.

View Article and Find Full Text PDF

Heparan sulfate (HS) binds and modulates the transport and activity of a large repertoire of regulatory proteins. The HS phage display antibodies are powerful tools for the analysis of native HS structure in situ; however, their epitopes are not well defined. Analysis of the binding specificities of a set of HS antibodies by competitive binding assays with well defined chemically modified heparins demonstrates that O-sulfates are essential for binding; however, increasing sulfation does not necessarily correlate with increased antibody reactivity.

View Article and Find Full Text PDF

Dermatan sulfate (DS) expression in normal tissue and ovarian cancer was investigated using the novel, phage display-derived antibody GD3A12 that was selected against embryonic glycosaminoglycans (GAGs). Antibody GD3A12 was especially reactive with DS rich in IdoA-GalNAc4S disaccharide units. IdoA residues are important for antibody recognition as DS polymers with low numbers of IdoA residues were less reactive, and expression of the DS epimerase in ovarian carcinoma cells was associated with expression of the GD3A12 epitope.

View Article and Find Full Text PDF

Heparinoids are used in the clinic as anticoagulants. A specific pentasaccharide in heparinoids activates antithrombin III, resulting in inactivation of factor Xa and-when additional saccharides are present-inactivation of factor IIa. Structural and functional analysis of the heterogeneous heparinoids generally requires advanced equipment, is time consuming, and needs (extensive) sample preparation.

View Article and Find Full Text PDF

Chondroitin sulfate (CS) is abundantly present in the tumor stroma, and tumor-specific CS modifications might be potential targets to influence tumor development. We applied the phage display technology to select antibodies that identify these tumor-specific CS modifications. Antibody GD3G7 was selected against embryonic glycosaminoglycans, and it reacted strongly with CS-E (rich in GlcA-GalNAc4S6S units).

View Article and Find Full Text PDF

Antibodies against heparan sulfate (HS) are useful tools to study the structural diversity of HS. They demonstrate the large sequential variation within HS and show the distribution of HS oligosaccharide sequences within their natural environment. We analyzed the distribution and the structural characteristics of the oligosaccharide epitope recognized by anti-HS antibody HS4C3.

View Article and Find Full Text PDF

The snail glycosaminoglycan acharan sulfate (AS) is structurally related to heparan sulfates (HS) and has a repeating disaccharide structure of alpha-d-N-acetylglucosaminyl-2-O-sulfo-alpha-l-iduronic acid (GlcNAc-IdoA2S) residues. Using the phage display technology, a unique antibody (MW3G3) was selected against AS with a V(H)3, DP 47, and a CDR3 amino acid sequence of QKKRPRF. Antibody MW3G3 did not react with desulfated, N-deacetylated or N-sulfated AS, indicating that reactivity depends on N-acetyl and 2-O-sulfate groups.

View Article and Find Full Text PDF

Chondroitin sulfate (CS) belongs to the group of glycosaminoglycans (GAGs), which are linear polysaccharides, located in the extracellular matrix and on the cell surface. To study the structure and distribution of CS in human skin and skin disorders, we have selected antibodies using phage display technique against CS. Four unique human anti-CS single-chain antibodies were selected: IO3D9, IO3H10, IO3H12, and IO4C2.

View Article and Find Full Text PDF

Heparan sulphate (HS) represents a heterogeneous class of molecules on cell membranes and extracellular matrices. These molecules are involved in a variety of biological processes, including immune responses, through their binding and functional modulation of proteins. Recently a panel of HS-epitope-specific, human single chain antibodies have been generated by phage display, facilitating analysis of the structural heterogeneity of HS in relation to pathological conditions.

View Article and Find Full Text PDF