Publications by authors named "Westerheide S"

Background/objectives: As cells divide, telomeres shorten through a phenomenon known as telomere attrition, which leads to unavoidable senescence of cells. Unprotected DNA exponentially increases the odds of mutations, which can evolve into premature aging disorders and tumorigenesis. There has been growing academic and clinical interest in exploring this duality and developing optimal therapeutic strategies to combat telomere attrition in aging and cellular immortality in cancer.

View Article and Find Full Text PDF

The cell cycle apoptosis regulator (CCAR) family of proteins consists of two proteins, CCAR1 and CCAR2, that play a variety of roles in cellular physiology and pathology. These multidomain proteins are able to perform multiple interactions and functions, playing roles in processes such as stress responses, metabolism, and the DNA damage response. The evolutionary conservation of CCAR family proteins allows their study in model organisms such as Caenorhabditis elegans, where a role for CCAR in aging was revealed.

View Article and Find Full Text PDF

The Cell Division Cycle and Apoptosis Regulator (CCAR) protein family members have recently emerged as regulators of alternative splicing and transcription, as well as having other key physiological functions. For example, mammalian CCAR2/DBC1 forms a complex with the zinc factor protein ZNF326 to integrate alternative splicing with RNA polymerase II transcriptional elongation in AT-rich regions of the DNA. Additionally, CCAR-1, a homolog to mammalian CCAR2, facilitates the alternative splicing of the perlecan gene.

View Article and Find Full Text PDF

Proper regulation of replication fork progression is important for genomic maintenance. Subverting the transcription-induced conflicts is crucial in preserving the integrity of replication forks. Various chromatin remodelers, such as histone chaperone and histone deacetylases are known to modulate replication stress, but how these factors are organized or collaborate are not well understood.

View Article and Find Full Text PDF

Patients carrying autosomal dominant mutations in the histone/lysine acetyl transferases CBP or EP300 develop a neurodevelopmental disorder: Rubinstein-Taybi syndrome (RSTS). The biological pathways underlying these neurodevelopmental defects remain elusive. Here, we unravel the contribution of a stress-responsive pathway to RSTS.

View Article and Find Full Text PDF

The decline of proteostasis is a hallmark of aging that is, in part, affected by the dysregulation of the heat shock response (HSR), a highly conserved cellular response to proteotoxic stress in the cell. The heat shock transcription factor HSF-1 is well-studied as a key regulator of proteostasis, but mechanisms that could be used to modulate HSF-1 function to enhance proteostasis during aging are largely unknown. In this study, we examined lysine acetyltransferase regulation of the HSR and HSF-1 in .

View Article and Find Full Text PDF

The transcription factor heat shock factor-1 (HSF-1) regulates the heat shock response (HSR), a cytoprotective response induced by proteotoxic stresses. Data from model organisms has shown that HSF-1 also has non-stress biological roles, including roles in the regulation of development and longevity. To better study HSF-1 function, we created a C.

View Article and Find Full Text PDF

Metallic structures can be used for the localized heating of fluid and the controlled generation of microfluidic currents. Carefully designed currents can move and trap small particles and cells. Here we demonstrate a new bi-metallic substrate that allows much more powerful micro-scale manipulation.

View Article and Find Full Text PDF

Defects in protein quality control during aging are central to many human diseases, and strategies are needed to better understand mechanisms of controlling the quality of the proteome. The heat-shock response (HSR) is a conserved survival mechanism mediated by the transcription factor HSF1 which functions to maintain proteostasis. In mammalian cells, HSF1 is regulated by a variety of factors including the prolongevity factor SIRT1.

View Article and Find Full Text PDF

The ability of an organism to sense and adapt to environmental stressors is essential for proteome maintenance and survival. The highly conserved heat shock response is a survival mechanism employed by all organisms, including the nematode Caenorhabditis elegans, upon exposure to environmental extremes. Transcriptional control of the metazoan heat shock response is mediated by the heat shock transcription factor HSF-1.

View Article and Find Full Text PDF

Ovarian cancer is the most lethal gynecological cancer, with over 200,000 women diagnosed each year and over half of those cases leading to death. These poor statistics are related to a lack of early symptoms and inadequate screening techniques. This results in the cancer going undetected until later stages when the tumor has metastasized through a process that requires the epithelial to mesenchymal transition (EMT).

View Article and Find Full Text PDF

As the population ages, there is a critical need to uncover strategies to combat diseases of aging. Studies in the soil-dwelling nematode Caenorhabditis elegans have demonstrated the protective effects of coffee extract and caffeine in promoting the induction of conserved longevity pathways including the insulin-like signaling pathway and the oxidative stress response. We were interested in determining the effects of coffee and caffeine treatment on the regulation of the heat shock response.

View Article and Find Full Text PDF

Although multiple CHCHD10 mutations are associated with the spectrum of familial and sporadic frontotemporal dementia-amyotrophic lateral sclerosis (FTD-ALS) diseases, neither the normal function of endogenous CHCHD10 nor its role in the pathological milieu (that is, TDP-43 pathology) of FTD/ALS have been investigated. In this study, we made a series of observations utilizing Caenorhabditis elegans models, mammalian cell lines, primary neurons and mouse brains, demonstrating that CHCHD10 normally exerts a protective role in mitochondrial and synaptic integrity as well as in the retention of nuclear TDP-43, whereas FTD/ALS-associated mutations (R15L and S59L) exhibit loss of function phenotypes in C. elegans genetic complementation assays and dominant negative activities in mammalian systems, resulting in mitochondrial/synaptic damage and cytoplasmic TDP-43 accumulation.

View Article and Find Full Text PDF

Ovarian cancer is the most lethal gynecological cancer, with over 200,000 women diagnosed each year and over half of those cases leading to death. The proteotoxic stress-responsive transcription factor HSF1 is frequently overexpressed in a variety of cancers and is vital to cellular proliferation and invasion in some cancers. Upon analysis of various patient data sets, we find that HSF1 is frequently overexpressed in ovarian tumor samples.

View Article and Find Full Text PDF

Analysis of individual cells at the subcellular level is important for understanding diseases and accelerating drug discovery. Nanoscale endoscopes allow minimally invasive probing of individual cell interiors. Several such instruments have been presented previously, but they are either too complex to fabricate or require sophisticated external detectors because of low signal collection efficiency.

View Article and Find Full Text PDF

Background: The heat shock response, induced by cytoplasmic proteotoxic stress, is one of the most highly conserved transcriptional responses. This response, driven by the heat shock transcription factor HSF1, restores proteostasis through the induction of molecular chaperones and other genes. In addition to stress-dependent functions, HSF1 has also been implicated in various stress-independent functions.

View Article and Find Full Text PDF

In silico experiments bear the potential for further understanding of biological transport processes by allowing a systematic modification of any spatial property and providing immediate simulation results. Cell polarization and spatial reorganization of membrane proteins are fundamental for cell division, chemotaxis and morphogenesis. We chose the yeast Saccharomyces cerevisiae as an exemplary model system which entails the shuttling of small Rho GTPases such as Cdc42 and Rho, between an active membrane-bound form and an inactive cytosolic form.

View Article and Find Full Text PDF

In vitro bioassays have shown promise as water quality monitoring tools. In this study, four commercially available in vitro bioassays (GeneBLAzer(®) androgen receptor (AR), estrogen receptor-alpha (ER), glucocorticoid receptor (GR) and progesterone receptor (PR) assays) were adapted to screen for endocrine active chemicals in samples from two recycled water plants. The standardized protocols were used in an interlaboratory comparison exercise to evaluate the reproducibility of in vitro bioassay results.

View Article and Find Full Text PDF

Background: Little is known about the role of amino acids in cellular signaling pathways, especially as it pertains to pathways that regulate the rate of aging. However, it has been shown that methionine or tryptophan restriction extends lifespan in higher eukaryotes and increased proline or tryptophan levels increase longevity in C. elegans.

View Article and Find Full Text PDF

Deleted in breast cancer 1 (DBC1, CCAR2, KIAA1967) is a large, predominantly nuclear, multidomain protein that modulates gene expression by inhibiting several epigenetic modifiers, including the deacetylases SIRT1 and HDAC3, and the methyltransferase SUV39H1. DBC1 shares many highly conserved protein domains with its paralog cell cycle and apoptosis regulator 1 (CCAR1, CARP-1). In this study, we examined the full-length sequential and structural properties of DBC1 and CCAR1 from multiple species and correlated these properties with evolution.

View Article and Find Full Text PDF

The heat shock response (HSR) protects cells from protein-denaturing stress through the induction of chaperones. The HSR is conserved in all organisms and is mediated by the transcription factor HSF-1. We show here that a compound commonly used to prevent larval development in Caenorhabditis elegans, 5-fluoro-2'-deoxyuridine (FUdR), can enhance heat shock induction of hsp mRNA in an HSF-1-dependent manner.

View Article and Find Full Text PDF

Thousands of organic micropollutants and their transformation products occur in water. Although often present at low concentrations, individual compounds contribute to mixture effects. Cell-based bioassays that target health-relevant biological endpoints may therefore complement chemical analysis for water quality assessment.

View Article and Find Full Text PDF

Deposits of fibrils formed by disease-specific proteins are the molecular hallmark of such diverse human disorders as Alzheimer's disease, type II diabetes, or rheumatoid arthritis. Amyloid fibril formation by structurally and functionally unrelated proteins exhibits many generic characteristics, most prominently the cross β-sheet structure of their mature fibrils. At the same time, amyloid formation tends to proceed along one of two separate assembly pathways yielding either stiff monomeric filaments or globular oligomers and curvilinear protofibrils.

View Article and Find Full Text PDF

Cells must continuously respond to stressful insults via the upregulation of cytoprotective pathways. The longevity factor and deacetylase SIRT1 plays a critical role in coordinating this cellular response to stress. SIRT1 activity and levels are regulated by cellular stressors, including metabolic, genotoxic, oxidative, and proteotoxic stress.

View Article and Find Full Text PDF