Publications by authors named "Westaway E"

Agriculture and food systems play a central role in nutrition by supplying nutritious, healthy and affordable foods. When integrated with nutrition education for behaviour change, agricultural interventions that supply diverse affordable foods from all food groups have great scope for improving young child and family diets. In 2014, process reviews were conducted in Cambodia and Malawi of food security projects that provided agricultural support and community-based nutrition education on improved infant and young child feeding (IYCF).

View Article and Find Full Text PDF

Background: This paper describes the community engagement process undertaken to ascertain the focus, development and implementation of an intervention to improve iodised salt consumption in rural communities in North West Pakistan. The Jirga is a traditional informal structure, which gathers men respected within their community and acts in a governing and decision-making capacity in the Pukhtoon culture. The Jirga system had a dual purpose for the study: to access men from the community to discuss the importance of iodised salt, and as an engagement process for the intervention.

View Article and Find Full Text PDF

Iodine deficiency is still prevalent in parts of Pakistan, despite the introduction of a national Iodine Deficiency Disorder Control Programme in 1994. The purpose of this study was to gain an understanding of the knowledge, attitudes and practice regarding the use of iodised salt in a brick kiln community, and to use this information to design an intervention to increase its consumption. A cross-sectional survey was used to assess the use of iodised salt and focus group discussions explored the attitudes and barriers to its use.

View Article and Find Full Text PDF

Using West Nile virus strain Kunjin virus (WNV(KUN)) as a model system for flavivirus replication, we showed that the virus replication complex (RC) is associated with the dsRNA template located in induced membranes only in the cytoplasm. In this report we established for the first time that the RNA-dependent RNA polymerase NS5 is located in flavivirus-induced membranes, including the site of viral RNA replication. We found no evidence for nuclear localization of the essential RC components NS5 and its dsRNA template for WNV(KUN) or the closely related WNV strain Sarafend, by immuno-electron microscopy or by immunofluorescence.

View Article and Find Full Text PDF

A common feature associated with the replication of most RNA viruses is the formation of a unique membrane environment encapsulating the viral replication complex. For their part, flaviviruses are no exception, whereupon infection causes a dramatic rearrangement and induction of unique membrane structures within the cytoplasm of infected cells. These virus-induced membranes, termed paracrystalline arrays, convoluted membranes, and vesicle packets, all appear to have specific functions during replication and are derived from different organelles within the host cell.

View Article and Find Full Text PDF

The two sets of connected membranes induced in Kunjin virus-infected cells are characterized by the presence of NS3 helicase/protease in both, and by RNA-dependent RNA polymerase (RdRp) activity plus the associated double-stranded RNA (dsRNA) template in vesicle packets (VP), or by the absence of both the VP-specific markers in the convoluted membranes/paracrystalline arrays (CM/PC). Attempts were made to separate flavivirus-induced membranes by sedimentation or flotation analyses in density gradients of sucrose or iodixanol, respectively, after treatment of cell lysates by sonication, osmotic shock, or tryptic digestion. Only osmotic shock treatment provided suggestive evidence of separation.

View Article and Find Full Text PDF

The Kunjin virus (KUNV) has provided a useful laboratory model for Flavivirus RNA replication. The synthesis of progeny RNA(+) strands occurs via asymmetric and semiconservative replication on a template of recycling double-stranded RNA (dsRna) or replicative form (RF). Kinetics of viral RNA synthesis indicated a cycle period of about 15 min during which, on average, a single nascent RNA (+) strand displaces the pre-existing RNA(+) strand in the replicative intermediate.

View Article and Find Full Text PDF

Point mutations that resulted in a substitution of the conserved 3'-penultimate cytidine in genomic RNA or the RNA negative strand of the self-amplifying replicon of the Flavivirus Kunjin virus completely blocked in vivo replication. Similarly, substitutions of the conserved 3'-terminal uridine in the RNA negative or positive strand completely blocked replication or caused much-reduced replication, respectively. The same preference for cytidine in the 3'-terminal dinucleotide was noted in reports of the in vitro activity of the RNA-dependent RNA polymerase (RdRp) for the other genera of Flaviviridae that also employ a double-stranded RNA (dsRNA) template to initiate asymmetric semiconservative RNA positive-strand synthesis.

View Article and Find Full Text PDF

The intracellular assembly site for flaviviruses in currently not known but is presumed to be located within the lumen of the rough endoplasmic reticulum (RER). Building on previous studies involving immunofluorescence (IF) and cryoimmunoelectron microscopy of Kunjin virus (KUN)-infected cells, we sought to identify the steps involved in the assembly and maturation of KUN. Thus, using antibodies directed against envelope protein E in IF analysis, we found the accumulation of E within regions coincident with the RER and endosomal compartments.

View Article and Find Full Text PDF

A possible role in RNA replication for interactions between conserved complementary (cyclization) sequences in the 5'- and 3'-terminal regions of Flavivirus RNA was previously suggested but never tested in vivo. Using the M-fold program for RNA secondary-structure predictions, we examined for the first time the base-pairing interactions between the covalently linked 5' genomic region (first ~160 nucleotides) and the 3' untranslated region (last ~115 nucleotides) for a range of mosquito-borne Flavivirus species. Base-pairing occurred as predicted for the previously proposed conserved cyclization sequences.

View Article and Find Full Text PDF

In order to study whether flavivirus RNA packaging is dependent on RNA replication, we generated two DNA-based Kunjin virus constructs, pKUN1 and pKUN1dGDD, allowing continuous production of replicating (wild-type) and nonreplicating (with a deletion of the NS5 gene RNA-polymerase motif GDD) full-length Kunjin virus RNAs, respectively, via nuclear transcription by cellular RNA polymerase II. As expected, transfection of pKUN1 plasmid DNA into BHK cells resulted in the recovery of secreted infectious Kunjin virions. Transfection of pKUN1dGDD DNA into BHK cells, however, did not result in the recovery of any secreted virus particles containing encapsidated dGDD RNA, despite an apparent accumulation of this RNA in cells demonstrated by Northern blot analysis and its efficient translation demonstrated by detection of correctly processed labeled structural proteins (at least prM and E) both in cells and in the culture fluid using coimmunoprecipitation analysis with anti-E antibodies.

View Article and Find Full Text PDF

The NS5 protein of the flavivirus Kunjin (KUN) contains conserved sequence motifs characteristic of RNA-dependent RNA polymerase (RdRp) activity. To investigate this activity in vitro, recombinant NS5 proteins with C-terminal (NS5CHis) and N-terminal (NS5NHis) hexahistidine tags were produced in baculovirus-infected insect cells and purified to near homogeneity by nickel affinity chromatography. Purified NS5CHis exhibited RdRp activity with both specific (9 kb KUN replicon) and non-specific (8.

View Article and Find Full Text PDF

This report focuses mainly on the characterization of a Vero cell line stably expressing the flavivirus Kunjin (KUN) replicon C20SDrep (C20SDrepVero). We showed by immunofluorescence and cryoimmunoelectron microscopy that unique flavivirus-induced membrane structures, termed convoluted membranes/paracrystalline structures, were induced in the C20SDrepVero cells. These induced cytoplasmic foci were immunolabeled with KUN virus anti-NS3 antibodies and with antibodies to the cellular markers ERGIC53 (for the intermediate compartment) and protein disulfide isomerase (for the rough endoplasmic reticulum).

View Article and Find Full Text PDF

Most of the seven flavivirus nonstructural proteins (NS1 to NS5) encoded in the distal two-thirds of the RNA positive-sense genome are believed to be essential components of RNA replication complexes. To explore the functional relationships of these components in RNA replication, we used trans-complementation analysis of full-length infectious RNAs of Kunjin (KUN) virus with a range of lethal in-frame deletions in the nonstructural coding region, using as helper a repBHK cell line stably producing functional replication complexes from KUN replicon RNA. Recently we showed that replication of KUN RNAs with large carboxy-terminal deletions including the entire RNA polymerase region in the NS5 gene, representing 34 to 75% of the NS5 coding content, could be complemented after transfection into repBHK cells.

View Article and Find Full Text PDF

Successful trans-complementation of the defective Kunjin virus (KUN) RNA FLdGDD with a deletion of the RNA polymerase motif GDD in the NS5 gene by using a BHK cell line, repBHK, that continuously produced a functionally active KUN replication complex (RC) from replicon RNA was recently reported (A. A. Khromykh, M.

View Article and Find Full Text PDF

Replication of the flavivirus Kunjin virus is associated with virus-induced membrane structures within the cytoplasm of infected cells; these membranes appear as packets of vesicles associated with the sites of viral RNA synthesis and as convoluted membranes (CM) and paracrystalline arrays (PC) containing the components of the virus-specified protease (E. G. Westaway, J.

View Article and Find Full Text PDF

Recently we described rescue of defective Kunjin virus (KUN) RNAs with small deletions in the methyltransferase and RNA polymerase motifs of the ns5 gene, using BHK cells stably expressing KUN replicon RNA (repBHK cells) as helper (A. A. Khromykh et al.

View Article and Find Full Text PDF

Incorporation of bromouridine (BrU) into viral RNA in Kunjin virus-infected Vero cells treated with actinomycin D was monitored in situ by immunofluorescence using antibodies reactive with Br-RNA. The results showed unequivocally that nascent viral RNA was located focally in the same subcellular site as dsRNA, the putative template for flavivirus RNA synthesis. When cells were labeled with BrU for 15 min, the estimated cycle period for RNA synthesis, the nascent Br-RNA was not digested in permeabilized cells by RNase A under high-salt conditions, in accord with our original model of flavivirus RNA synthesis (Chu, P.

View Article and Find Full Text PDF

A BHK cell line persistently expressing a Kunjin (KUN) virus replicon RNA (repBHK, similar to our recently described ME/76Neo BHK cell line [A. A. Khromykh and E.

View Article and Find Full Text PDF

Kunjin virus (KUN) replicon RNA was encapsidated by a procedure involving two consecutive electroporations of BHK-21 cells, first with KUN replicon RNA C20DXrep (with prME and most of C deleted) and about 24 h later with a recombinant Semliki Forest virus (SFV) replicon RNA(s) expressing KUN structural proteins. The presence of KUN replicon RNA in encapsidated particles was demonstrated by its amplification and expression in newly infected BHK-21 cells, detected by Northern blotting with a KUN-specific probe and by immunofluorescence analysis with anti-NS3 antibodies. No infectious particles were produced when C20DXrep RNA and recombinant SFV RNAs were electroporated simultaneously.

View Article and Find Full Text PDF

The replication of bovine viral diarrhoea virus (BVDV) RNA is considered to involve replicative intermediates (RI) and replicative forms (RF) of virus RNA. These RNA species were radiolabelled metabolically by 3H-uridine in BVDV-infected cells and separated by sucrose gradient centrifugation. RNA in the fractions was then digested with RNase A in high salt (2 x SSC) and the RNase-resistance was determined.

View Article and Find Full Text PDF

The subcellular location of the nonstructural proteins NS1, NS2B, and NS3 in Vero cells infected with the flavivirus Kunjin was investigated using indirect immunofluorescence and cryoimmunoelectron microscopy with monospecific antibodies. Comparisons were also made by dual immunolabelling using antibodies to double-stranded RNA (dsRNA), the putative template in the flavivirus replication complex. At 8 h postinfection, the immunofluorescent patterns showed NS1, NS2B, NS3, and dsRNA located in a perinuclear rim with extensions into the peripheral cytoplasm.

View Article and Find Full Text PDF

The subcellular locations in infected Vero cells of Kunjin (KUN) virus core protein C and NS4B were analyzed by immunofluorescence (IF) and by immunoelectron microscopy using monospecific antibodies. Selection of appropriate fixation methods for IF showed that both proteins were associated at all times with perinuclear membranes spreading outward in a reticular pattern and they entered the nucleus late during the latent period. Subsequently NS4B was also dispersed through the nucleoplasm, while C appeared in the nucleolus and the nucleoplasm.

View Article and Find Full Text PDF