Publications by authors named "Wesley Wayman"

The rostromedial tegmental nucleus (RMTg) encodes negative reward prediction error (RPE) and plays an important role in guiding behavioral responding to aversive stimuli. Previous research has focused on regulation of RMTg activity by the lateral habenula despite studies revealing RMTg afferents from other regions including the frontal cortex. The current study provides a detailed anatomical and functional analysis of cortical input to the RMTg of male rats.

View Article and Find Full Text PDF

Inhalants, including volatile organic solvents such as toluene, continue to be one of the most prevalent, and often first substances abused by adolescents. Like other drugs of abuse, toluene affects the function of neurons within key brain reward circuits including the prefrontal cortex, ventral tegmental area, and nucleus accumbens. However, preclinical models used to study these toluene-induced adaptations generally employ passive exposure paradigms that do not mirror voluntary patterns of solvent exposure observed in humans.

View Article and Find Full Text PDF

Channelrhodopsins are light activated ion channels used extensively over the past decade to probe the function of genetically defined neuronal populations and distinct neural circuits with high temporal and spatial precision. The widely used Channelrhodopsin-2 variant (ChR2) is an excitatory opsin that undergoes conformational changes in response to blue light, allowing non-selective passage of protons and cations across the plasma membrane thus leading to depolarization. In the addiction neuroscience field, opsins such as ChR2 provide a means to disambiguate the overlapping circuitry involved in mediating the reinforcing and aversive effects of drugs of abuse as well as to determine the plasticity that can occur in these circuits during the development of dependence.

View Article and Find Full Text PDF

Abuse rates for inhalants among adolescents continue to be high, yet preclinical models for studying mechanisms underlying inhalant abuse remain limited. Our laboratory has previously shown that, in male rats, an acute binge-like exposure to toluene vapor that mimics human solvent abuse modifies the intrinsic excitability of mPFC pyramidal neurons projecting to the NAc. These changes showed region (infralimbic; IL vs prelimbic; PRL), layer (shallow; 2/3 vs deep; 5/6), target (core vs shell), and age (adolescent vs adult) dependent differences (Wayman and Woodward, 2017).

View Article and Find Full Text PDF

Inhalants, including toluene, target the addiction neurocircuitry and are often one of the first drugs of abuse tried by adolescents. The medial prefrontal cortex (mPFC) is involved in regulating goal-directed/reward-motivated behaviors and different mPFC sub-regions have been proposed to promote (prelimbic, PRL) or inhibit (infralimbic, IL) these behaviors. While this dichotomy has been studied in the context of other drugs of abuse, it is not known whether toluene exposure differentially affects neurons within PRL and IL regions.

View Article and Find Full Text PDF

The medial prefrontal cortex (mPFC) is dysregulated in HIV-1-infected humans and the dysregulation is enhanced by cocaine abuse. Understanding mPFC pathophysiology in this comorbid state has been hampered by the dearth of relevant animal models. To help fill this knowledge gap, electrophysiological assessments were made of mPFC pyramidal neurons (PN) from adult male HIV-1 transgenic (Tg) F344 rats (which express seven of the nine HIV-1 toxic proteins) and non-Tg F344 rats that self-administered cocaine for 14 days (COC-SA), as well as saline-yoked controls (SAL-Yoked) and experimentally naive Tg and non-Tg rats.

View Article and Find Full Text PDF
Article Synopsis
  • The lifespan of HIV-positive individuals has improved, but complications related to the central nervous system (CNS) remain significant issues.
  • HIV does not directly infect brain cells (neurons), but its proteins, especially Tat from infected glial cells, can have harmful effects on the brain.
  • Cocaine abuse among HIV-infected individuals worsens neurological problems, and this review examines the brain areas and mechanisms affected by both chronic cocaine use and HIV proteins.
View Article and Find Full Text PDF

The medial prefrontal cortex (mPFC) plays a critical role in reward-motivated behaviors. Repeated cocaine exposure dysregulates the dorsal mPFC, and this is thought to contribute to cocaine-seeking and relapse of abstinent abusers. Neuropathology of the mPFC also occurs in human immunodeficiency virus (HIV)-positive individuals, and this is exaggerated in those who also abuse cocaine.

View Article and Find Full Text PDF

HIV-1 proteins, including the transactivator of transcription (Tat), are believed to be involved in HIV-associated neurocognitive disorders by disrupting Ca²⁺ homeostasis, which leads to progressive dysregulation, damage, or death of neurons in the brain. We have found previously that bath-applied Tat abnormally increased Ca²⁺ influx through overactivated, voltage-sensitive L-type Ca²⁺ channels in pyramidal neurons within the rat medial prefrontal cortex (mPFC). However, it is unknown whether the Tat-induced Ca²⁺ dysregulation was mediated by increased activity and/or the number of the L-channels.

View Article and Find Full Text PDF

The consequences of chronic methylphenidate (MPH) administration in adolescents for the treatment of attention-deficit/hyperactivity disorder (ADHD) remain to be fully understood. Studies in rats indicate that the pharmacokinetics of psychostimulant administration can powerfully influence the behavioral and neural consequences of chronic treatment. The purpose of the present study was to assess the effects of intermittent (0.

View Article and Find Full Text PDF