Background: Wolff-Parkinson-White (WPW) syndrome is a proarrhythmic condition that may require restriction from strenuous activities and is characterized by ECG signs, including delta waves. We observed cases of intermittent WPW patterns presenting as QRS alternans ('WPW alternans') in a large pre-participation ECG screening cohort of young men reporting for military conscription.
Objectives: We aimed to determine the WPW alternans pattern, case characteristics, and the prevalence of other relevant differential diagnoses presenting as QRS alternans in a pre-participation setting.
Introduction: A growing body of evidence suggests that specific, naturally occurring gut bacteria are under-represented in the intestinal tracts of subjects with type 2 diabetes (T2D) and that their functions, like gut barrier stability and butyrate production, are important to glucose and insulin homeostasis. The objective of this study was to test the hypothesis that enteral exposure to microbes with these proposed functions can safely improve clinical measures of glycemic control and thereby play a role in the overall dietary management of diabetes.
Research Design And Methods: We evaluated whether a probiotic comprised of these anaerobic bacteria would enhance dietary management by (1) manufacturing two novel probiotic formulations containing three (WBF-010) or five (WBF-011) distinct strains in a Current Good Manufacturing Practice (cGMP) facility, (2) establishing consistent live-cell concentrations, (3) confirming safety at target concentrations dispensed in both animal and human studies and (4) conducting a 12-week parallel, double-blind, placebo-controlled, proof-of-concept study in which subjects previously diagnosed with T2D (n=76) were randomly assigned to a two times a day regimen of placebo, WBF-010 or WBF-011.
Darwin's finch species in the Galapagos Archipelago are an iconic adaptive radiation that offer a natural experiment to test for the various factors that influence gut microbiome composition. The island of Floreana has the longest history of human settlement within the archipelago and offers an opportunity to compare island and habitat effects on Darwin's finch microbiomes. In this study, we compare gut microbiomes in Darwin's finch species on Floreana Island to test for effects of host phylogeny, habitat (lowlands, highlands), and island (Floreana, Santa Cruz).
View Article and Find Full Text PDFDarwin's finches are an iconic example of an adaptive radiation with well-characterized evolutionary history, dietary preferences, and biogeography, offering an unparalleled opportunity to disentangle effects of evolutionary history on host microbiome from other factors like diet and habitat. Here, we characterize the gut microbiome in Darwin's finches, comparing nine species that occupy diverse ecological niches on Santa Cruz island. The finch phylogeny showed moderate congruence with the microbiome, which was comprised mostly of the bacterial phyla Firmicutes, Actinobacteria, and Proteobacteria.
View Article and Find Full Text PDFProbiotics are bacterial species or assemblages that are applied to animals and plants with the intention of altering the microbiome in a beneficial way. Probiotics have been linked to positive health effects such as faster disease recovery times in humans and increased weight gain in poultry. Pigeon fanciers often feed their show pigeons probiotics with the intention of increasing flight performance.
View Article and Find Full Text PDFBackground: Symbioses between chemoautotrophic bacteria and marine invertebrates are rare examples of living systems that are virtually independent of photosynthetic primary production. These associations have evolved multiple times in marine habitats, such as deep-sea hydrothermal vents and reducing sediments, characterized by steep gradients of oxygen and reduced chemicals. Due to difficulties associated with maintaining these symbioses in the laboratory and culturing the symbiotic bacteria, studies of chemosynthetic symbioses rely heavily on culture independent methods.
View Article and Find Full Text PDFFor many traits, including susceptibility to common diseases in humans, causal loci uncovered by genetic-mapping studies explain only a minority of the heritable contribution to trait variation. Multiple explanations for this 'missing heritability' have been proposed. Here we use a large cross between two yeast strains to accurately estimate different sources of heritable variation for 46 quantitative traits, and to detect underlying loci with high statistical power.
View Article and Find Full Text PDF