Publications by authors named "Wesley Leoricy Marques"

myo-Inositol oxygenase (Miox) is a rate-limiting enzyme for glucaric acid production via microbial fermentation. The enzyme converts myo-inositol to glucuronate, which is further converted to glucaric acid, a natural compound with industrial uses that range from detergents to pharmaceutical synthesis to polymeric materials. More than 2,000 Miox sequences are available in the Uniprot database but only thirteen are classified as reviewed in Swiss-Prot (August 2019).

View Article and Find Full Text PDF

Knowledge on the genetic factors important for the efficient expression of plant transporters in yeast is still very limited. Phaseolus vulgaris sucrose facilitator 1 (PvSuf1), a presumable uniporter, was an essential component in a previously published strategy aimed at increasing ATP yield in Saccharomyces cerevisiae. However, attempts to construct yeast strains in which sucrose metabolism was dependent on PvSUF1 led to slow sucrose uptake.

View Article and Find Full Text PDF

Anaerobic industrial fermentation processes do not require aeration and intensive mixing and the accompanying cost savings are beneficial for production of chemicals and fuels. However, the free-energy conservation of fermentative pathways is often insufficient for the production and export of the desired compounds and/or for cellular growth and maintenance. To increase free-energy conservation during fermentation of the industrially relevant disaccharide sucrose by Saccharomyces cerevisiae, we first replaced the native yeast α-glucosidases by an intracellular sucrose phosphorylase from Leuconostoc mesenteroides (LmSPase).

View Article and Find Full Text PDF

Many relevant options to improve efficacy and kinetics of sucrose metabolism in Saccharomyces cerevisiae and, thereby, the economics of sucrose-based processes remain to be investigated. An essential first step is to identify all native sucrose-hydrolysing enzymes and sucrose transporters in this yeast, including those that can be activated by suppressor mutations in sucrose-negative strains. A strain in which all known sucrose-transporter genes (MAL11, MAL21, MAL31, MPH2, MPH3) were deleted did not grow on sucrose after 2 months of incubation.

View Article and Find Full Text PDF

Sucrose is an abundant, readily available and inexpensive substrate for industrial biotechnology processes and its use is demonstrated with much success in the production of fuel ethanol in Brazil. Saccharomyces cerevisiae, which naturally evolved to efficiently consume sugars such as sucrose, is one of the most important cell factories due to its robustness, stress tolerance, genetic accessibility, simple nutrient requirements and long history as an industrial workhorse. This minireview is focused on sucrose metabolism in S.

View Article and Find Full Text PDF

Background: Nitrogen (N) is a main nutrient required for tree growth and biomass accumulation. In this study, we analyzed the effects of contrasting nitrogen fertilization treatments on the phenotypes of fast growing Eucalyptus hybrids (E. urophylla x E.

View Article and Find Full Text PDF

Background: Eucalyptus is one of the most important sources of industrial cellulose. Three species of this botanical group are intensively used in breeding programs: E. globulus, E.

View Article and Find Full Text PDF