Publications by authors named "Wesley J Thompson"

The muscular dystrophy X-linked mouse (mdx) is the most commonly used preclinical model for Duchenne muscular dystrophy. Although disease progression in the mouse does not perfectly model the human disease, it shares many pathological features. Early characterizations of the model reported severe pathology through early adulthood followed by disease stabilization.

View Article and Find Full Text PDF

Schwann cells (SCs) are integral to the formation and function of the peripheral nervous system (PNS). Exemplifying their importance, the loss or dysfunction of SCs is a feature of a myriad of diseases and conditions that compromise the PNS. Thus, it remains essential to understand the rules that govern the proliferation, differentiation and reconnection of Schwann cells with peripheral axons.

View Article and Find Full Text PDF

Background: The arrangement of myonuclei in skeletal muscle tissue has long been used as a biomarker for muscle health, but there is a dearth of in vivo exploration of potential effects of myonuclear organization on the function and regeneration of skeletal muscle because traditional nuclear stains are performed on postmortem tissue. Therefore, we sought a transgenic method to produce a selective and persistent myonuclear label in whole muscles of living mice.

Methods: We bred together a mouse line with skeletal muscle fiber-selective expression of Cre recombinase and a second mouse line with a Cre-inducible fluorescently tagged histone protein to generate a mouse line that produces a myonuclear label suitable for vital imaging and histology of fixed tissue.

View Article and Find Full Text PDF

Spinal muscular atrophy (SMA) is caused by loss-of-function mutations in the survival of motoneuron gene 1 (SMN1). SMA is characterized by motoneuron death, skeletal muscle denervation and atrophy. Disease severity inversely correlates with copy number of a second gene (SMN2), which harbors a splicing defect that causes the production of inadequate levels of functional SMN protein.

View Article and Find Full Text PDF

Terminal Schwann cells (SCs) are nonmyelinating glia that are a prominent component of the neuromuscular junction (NMJ) where motor neurons form synapses onto muscle fibers. These cells play important roles not only in development and maintenance of the neuromuscular synapse but also restoring synaptic function after nerve damage. In response to muscle denervation, terminal SCs undergo dramatic changes in their gene expression patterns as well as in their morphology, such as extending elaborate processes into inter-junctional space.

View Article and Find Full Text PDF

Mice lacking the sarcolemmal protein dystrophin, designated mdx, have been widely used as a model of Duchenne muscular dystrophy. Dystrophic mdx mice as they mature develop notable morphological abnormalities to their neuromuscular junctions, the peripheral cholinergic synapses responsible for activating muscle fibers. Most obviously the acetylcholine receptor aggregates are fragmented into small non-continuous, islands.

View Article and Find Full Text PDF

During the initial stages of innervation of developing skeletal muscles, the terminal branches of axons from multiple motor neurons form neuromuscular junctions (NMJs) on a small region of each muscle fiber, the motor endplate. Subsequently, the number of axonal inputs at the endplate region is reduced so that, at maturity, each muscle fiber is innervated by the terminals of a single motor neuron. The Schwann cells associated with the axon terminals are involved in the removal of these synapses but do not select the axon that is ultimately retained on each fiber.

View Article and Find Full Text PDF

Synaptic connections in the nervous system are rearranged during development and in adulthood as a feature of growth, plasticity, aging, and disease. Glia are implicated as active participants in these changes. Here we investigated a signal that controls the participation of peripheral glia, the terminal Schwann cells (SCs), at the neuromuscular junction (NMJ) in mice.

View Article and Find Full Text PDF

Schwann cells (SCs) at neuromuscular junctions (NMJs) play active roles in synaptic homeostasis and repair. We have studied how SCs contribute to reinnervation of NMJs using vital imaging of mice whose motor axons and SCs are transgenically labeled with different colors of fluorescent proteins. Motor axons most commonly regenerate to the original synaptic site by following SC-filled endoneurial tubes.

View Article and Find Full Text PDF

The competitive processes that result in elimination/pruning of developing synapses are incompletely understood. Serial electron microscopy was used to image postnatal mouse neuromuscular junctions where elimination is well studied and events at every synaptic contact can be examined. Glial or Schwann cells (SCs) are shown to have two activities during elimination: their processes separate nerve terminals from each other and from the muscle fiber; they contact the plaque of acetylcholine receptors, apposing this surface as closely as the nerve, limiting the area where synaptic transmission occurs.

View Article and Find Full Text PDF

Background: A substantial barrier to commercialization of lignocellulosic ethanol production is a lack of process specific sensors and associated control strategies that are essential for economic viability. Current sensors and analytical techniques require lengthy offline analysis or are easily fouled in situ. Raman spectroscopy has the potential to continuously monitor fermentation reactants and products, maximizing efficiency and allowing for improved process control.

View Article and Find Full Text PDF

Vertebrate neuromuscular junctions are highly stable synapses, retaining the morphology they achieve in early postnatal development throughout most of life. However, these synapses undergo dramatic change during aging. The acetylcholine receptors (AChRs) change from smooth gutters into fragmented islands, and the nerve terminals change similarly to be varicosities apposed to these islands.

View Article and Find Full Text PDF

Muscle fibers degenerate and regenerate in response to contractile damage, during aging, and in various muscle diseases that weaken the fibers. It is known that degeneration and regeneration of the segment of the postsynaptic fiber produces dramatic alterations in the neuromuscular junction (NMJ) that forms on the regenerated fiber, but the mechanisms here are incompletely understood. We have used a laser microbeam to damage the postsynaptic fibers at individual NMJs in the sternomastoid muscle of living young adult mice and then followed the synapses vitally over time using fluorescent proteins expressed in motor neurons and glial cells and staining of postsynaptic acetylcholine receptors.

View Article and Find Full Text PDF

The CNS contains relatively few unmyelinated nerve fibers, and thus benefits from the advantages that are conferred by myelination, including faster conduction velocities, lower energy consumption for impulse transmission, and greater stability of point-to-point connectivity. In the PNS many fibers or regions of fibers the Schwann do not form myelin. Examples include C fibers nociceptors, postganglionic sympathetic fibers, and the Schwann cells associated with motor nerve terminals at neuromuscular junctions.

View Article and Find Full Text PDF

Understanding the cell-cell interactions that control CNS development and function has long been limited by the lack of methods to cleanly separate neural cell types. Here we describe methods for the prospective isolation and purification of astrocytes, neurons, and oligodendrocytes from developing and mature mouse forebrain. We used FACS (fluorescent-activated cell sorting) to isolate astrocytes from transgenic mice that express enhanced green fluorescent protein (EGFP) under the control of an S100beta promoter.

View Article and Find Full Text PDF

Neuregulins play crucial roles in early development of Schwann cells (SCs), but their roles in the activities of SCs during denervation and reinnervation of muscle are less clear. In the present study, the Tet-On system has been used in transgenic mice to enable inducible expression of a mutant, constitutively active neuregulin receptor (ErbB2) in SCs. This induction simulates neuregulin signaling to these cells.

View Article and Find Full Text PDF

To enable vital observation of glia at the neuromuscular junction, transgenic mice were generated that express proteins of the green fluorescent protein family under control of transcriptional regulatory sequences of the human S100B gene. Terminal Schwann cells were imaged repetitively in living animals of one of the transgenic lines to show that, except for extension and retraction of short processes, the glial coverings of the adult neuromuscular synapse are stable. In other lines, subsets of Schwann cells were labeled.

View Article and Find Full Text PDF

In partially denervated rodent muscle, terminal Schwann cells (TSCs) located at denervated end plates grow processes, some of which contact neighboring innervated end plates. Those processes that contact neighboring synapses (termed "bridges") appear to initiate nerve terminal sprouting and to guide the growth of the sprouts so that they reach and reinnervate denervated end plates. Studies conducted prior to knowledge of this potential involvement of Schwann cells showed that direct muscle stimulation inhibits terminal sprouting following partial denervation (Brown and Holland, 1979).

View Article and Find Full Text PDF