Arising through multiple binding elements, multivalency can specify the avidity, duration, cooperativity, and selectivity of biomolecular interactions, but quantitative prediction and design of these properties has remained challenging. Here we present MVsim, an application suite built around a configurational network model of multivalency to facilitate the quantification, design, and mechanistic evaluation of multivalent binding phenomena through a simple graphical user interface. To demonstrate the utility and versatility of MVsim, we first show that both monospecific and multispecific multivalent ligand-receptor interactions, with their noncanonical binding kinetics, can be accurately simulated.
View Article and Find Full Text PDFArising through multiple binding elements, multivalency can specify the avidity, duration, cooperativity, and selectivity of biomolecular interactions, but quantitative prediction and design of these properties has remained challenging. Here we present , an application suite built around a configurational network model of multivalency to facilitate the quantification, design, and mechanistic evaluation of multivalent binding phenomena through a simple graphical user interface. To demonstrate the utility and versatility of , we first show that both monospecific and multispecific multivalent ligand-receptor interactions, with their noncanonical binding kinetics, can be accurately simulated.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2019
Protein multivalency can provide increased affinity and specificity relative to monovalent counterparts, but these emergent biochemical properties and their mechanistic underpinnings are difficult to predict as a function of the biophysical properties of the multivalent binding partners. Here, we present a mathematical model that accurately simulates binding kinetics and equilibria of multivalent protein-protein interactions as a function of the kinetics of monomer-monomer binding, the structure and topology of the multidomain interacting partners, and the valency of each partner. These properties are all experimentally or computationally estimated a priori, including approximating topology with a worm-like chain model applicable to a variety of structurally disparate systems, thus making the model predictive without parameter fitting.
View Article and Find Full Text PDFMembrane-less organelles in cells are large, dynamic protein/protein or protein/RNA assemblies that have been reported in some cases to have liquid droplet properties. However, the molecular interactions underlying the recruitment of components are not well understood. Herein, we study how the ability to form higher-order assemblies influences the recruitment of the speckle-type POZ protein (SPOP) to nuclear speckles.
View Article and Find Full Text PDFCancer genome characterization has revealed driver mutations in genes that govern ubiquitylation; however, the mechanisms by which these alterations promote tumorigenesis remain incompletely characterized. Here, we analyzed changes in the ubiquitin landscape induced by prostate cancer-associated mutations of SPOP, an E3 ubiquitin ligase substrate-binding protein. SPOP mutants impaired ubiquitylation of a subset of proteins in a dominant-negative fashion.
View Article and Find Full Text PDFThe E3 ligases recruit substrate proteins for targeted ubiquitylation. Recent insights into the mechanisms of ubiquitylation demonstrate that E3 ligases can possess active regulatory properties beyond those of a simple assembly scaffold. Here, we describe the dimeric structure of the E3 ligase adaptor protein SPOP (speckle-type POZ protein) in complex with the N-terminal domain of Cul3 at 2.
View Article and Find Full Text PDFDistal myopathies are a heterogeneous group of disorders characterized by progressive weakness and muscular atrophy, beginning in distal limb muscles and affecting proximal limb muscles at a later stage. We studied a large German kindred with 10 affected members. Weakness and atrophy of the anterior tibial muscles started between the ages of 8 and 16 years, followed by atrophy of intrinsic hand muscles.
View Article and Find Full Text PDFSumoylation regulates the activities of several members of the ETS transcription factor family. To provide a molecular framework for understanding this regulation, we have characterized the conjugation of Ets-1 with SUMO-1. Ets-1 is modified in vivo predominantly at a consensus sumoylation motif containing Lys-15.
View Article and Find Full Text PDFAlthough sumoylation regulates a diverse and growing number of recognized biological processes, the molecular mechanisms by which the covalent attachment of the ubiquitin-like protein SUMO can alter the properties of a target protein remain to be established. To address this question, we have used NMR spectroscopy to characterize the complex of mature SUMO-1 with the C-terminal domain of human RanGAP1. Based on amide chemical shift and 15N relaxation measurements, we show that the C terminus of SUMO-1 and the loop containing the consensus sumoylation site in RanGAP1 are both conformationally flexible.
View Article and Find Full Text PDF