Publications by authors named "Wesley Hong"

Anion redox in lithium transition metal oxides such as LiRuO and LiMnO has catalyzed intensive research efforts to find transition metal oxides with anion redox that may boost the energy density of lithium-ion batteries. The physical origin of observed anion redox remains debated, and more direct experimental evidence is needed. In this work, we have shown electronic signatures of oxygen-oxygen coupling, direct evidence central to lattice oxygen redox (O/(O)), in charged LiRuO after Ru oxidation (Ru/Ru) upon first-electron removal with lithium de-intercalation.

View Article and Find Full Text PDF

Understanding how materials that catalyse the oxygen evolution reaction (OER) function is essential for the development of efficient energy-storage technologies. The traditional understanding of the OER mechanism on metal oxides involves four concerted proton-electron transfer steps on metal-ion centres at their surface and product oxygen molecules derived from water. Here, using in situ O isotope labelling mass spectrometry, we provide direct experimental evidence that the O generated during the OER on some highly active oxides can come from lattice oxygen.

View Article and Find Full Text PDF

Electrocatalysts play an important role in catalyzing the kinetics for oxygen reduction and oxygen evolution reactions for many air-based energy storage and conversion devices, such as metal-air batteries and fuel cells. Although noble metals have been extensively used as electrocatalysts, their limited natural abundance and high costs have motivated the search for more cost-effective catalysts. Oxides are suitable candidates since they are relatively inexpensive and have shown reasonably high activity for various electrochemical reactions.

View Article and Find Full Text PDF

The understanding of fundamental processes in the bulk and at the interfaces of electrochemical devices is a prerequisite for the development of new technologies with higher efficiency and improved performance. One energy storage scheme of great interest is splitting water to form hydrogen and oxygen gas and converting back to electrical energy by their subsequent recombination with only water as a byproduct. However, kinetic limitations to the rate of oxygen-based electrochemical reactions hamper the efficiency in technologies such as solar fuels, fuel cells, and electrolyzers.

View Article and Find Full Text PDF

The performance of photoelectrodes can be modified by changing the material chemistry, geometry, and interface engineering. Specifically, nanoscale active layers can facilitate the collection of charge carriers. In heterostructure devices, the multiple material interfaces are particularly important, which at present are not well understood for oxides.

View Article and Find Full Text PDF

Developing highly active and stable catalysts based on earth-abundant elements for oxygen electrocatalysis is critical to enable efficient energy storage and conversion. In this work, we took advantage of the high intrinsic oxygen reduction reaction (ORR) activity of La(0.8)Sr(0.

View Article and Find Full Text PDF

Heterostructured oxides have shown unusual electrochemical properties including enhanced catalytic activity, ion transport, and stability. In particular, it has been shown recently that the activity of oxygen electrocatalysis on the Ruddlesden-Popper/perovskite (La1-ySry)2CoO4±δ/La1-xSrxCoO3-δ heterostructure is remarkably enhanced relative to the Ruddlesden-Popper and perovskite constituents. Here we report the first atomic-scale structure and composition of (La1-ySry)2CoO4±δ/La1-xSrxCoO3-δ grown on SrTiO3.

View Article and Find Full Text PDF

The electronic structure of transition metal oxides governs the catalysis of many central reactions for energy storage applications such as oxygen electrocatalysis. Here we exploit the versatility of the perovskite structure to search for oxide catalysts that are both active and stable. We report double perovskites (Ln₀.

View Article and Find Full Text PDF

The slow kinetics of oxygen surface exchange hinders the efficiency of high-temperature oxygen electrocatalytic devices such as solid oxide fuel cells and oxygen separation membranes. Systematic investigations of material properties that link to catalytic activity can aid in the rational design of highly active cathode materials. Here, we explore LaCoO thin films as a model system for tuning catalytic activity through strain-induced changes in the Co spin state.

View Article and Find Full Text PDF

Perovskites are used to promote the kinetics of oxygen electrocatalysis in solid oxide fuel cells and oxygen permeation membranes. Little is known about the surface structure and chemistry of perovskites at high temperatures and partial oxygen pressures. Combining in situ X-ray reflectivity (XRR) and in situ ambient pressure X-ray photoelectron spectroscopy (APXPS), we report, for the first time, the evolution of the surface structure and chemistry of (001)-oriented perovskite La0.

View Article and Find Full Text PDF