J Struct Funct Genomics
December 2010
The identification of sequence-based protein domains and their boundaries is often a prelude to structure determination. An accurate prediction of disordered regions, secondary structures and low complexity segments of target protein sequences can improve the efficiency of selection in structural genomics and also aid in design of constructs for directed structural biology studies. At the Center for Eukaryotic Structural Genomics (CESG) we have developed DomainView, a web tool to visualize and analyze predicted protein domains, disordered regions, secondary structures and low complexity segments of target protein sequences for selection of experimental protein structure attempts.
View Article and Find Full Text PDFchipD is a web server that facilitates design of DNA oligonucleotide probes for high-density tiling arrays, which can be used in a number of genomic applications such as ChIP-chip or gene-expression profiling. The server implements a probe selection algorithm that takes as an input, in addition to the target sequences, a set of parameters that allow probe design to be tailored to specific applications, protocols or the array manufacturer's requirements. The algorithm optimizes probes to meet three objectives: (i) probes should be specific; (ii) probes should have similar thermodynamic properties; and (iii) the target sequence coverage should be homogeneous and avoid significant gaps.
View Article and Find Full Text PDFThe region surrounding a protein, known as the surface of interaction or molecular surface, can provide valuable insight into its function. Unfortunately, due to the complexity of both their geometry and their surface fields, study of these surfaces can be slow and difficult and important features may be hard to identify. Here, we describe our GRaphical Abstracted Protein Explorer, or GRAPE, a web server that allows users to explore abstracted representations of proteins.
View Article and Find Full Text PDFDesA3 (Rv3229c) from Mycobacterium tuberculosis is a membrane-bound stearoyl coenzyme A Delta(9) desaturase that reacts with the oxidoreductase Rv3230c to produce oleic acid. This work provides evidence for a mechanism used by mycobacteria to regulate this essential enzyme activity. DesA3 expressed as a fusion with either a C-terminal His(6) or c-myc tag had consistently higher activity and stability than native DesA3 having the native C-terminal sequence of LAA, which apparently serves as a binding determinant for a mycobacterial protease/degradation system directed at DesA3.
View Article and Find Full Text PDFJ Struct Funct Genomics
December 2007
Determination of a protein structure requires a series of decisions and processes, starting with target selection, through cloning, expression, purification, and finally structure determination. Structural genomics projects may distribute these steps among several different groups of researchers. Although this division may achieve a lower cost per solved structure, it creates a unique set of challenges for integrating and passing information on the progress of a given target across several functional divisions.
View Article and Find Full Text PDFX-ray crystallography typically uses a single set of coordinates and B factors to describe macromolecular conformations. Refinement of multiple copies of the entire structure has been previously used in specific cases as an alternative means of representing structural flexibility. Here, we systematically validate this method by using simulated diffraction data, and we find that ensemble refinement produces better representations of the distributions of atomic positions in the simulated structures than single-conformer refinements.
View Article and Find Full Text PDFSoluble N-ethylmaleimide-sensitive factor attachment protein gamma (gamma-SNAP) is a member of an eukaryotic protein family involved in intracellular membrane trafficking. The X-ray structure of Brachydanio rerio gamma-SNAP was determined to 2.6 A and revealed an all-helical protein comprised of an extended twisted-sheet of helical hairpins with a helical-bundle domain on its carboxy-terminal end.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2007
Aspartoacylase catalyzes hydrolysis of N-acetyl-l-aspartate to aspartate and acetate in the vertebrate brain. Deficiency in this activity leads to spongiform degeneration of the white matter of the brain and is the established cause of Canavan disease, a fatal progressive leukodystrophy affecting young children. We present crystal structures of recombinant human and rat aspartoacylase refined to 2.
View Article and Find Full Text PDFThe structure of the UDP-glucose pyrophosphorylase encoded by Arabidopsis thaliana gene At3g03250 has been solved to a nominal resolution of 1.86 Angstroms. In addition, the structure has been solved in the presence of the substrates/products UTP and UDP-glucose to nominal resolutions of 1.
View Article and Find Full Text PDFWe describe X-ray crystal and NMR solution structures of the protein coded for by Arabidopsis thaliana gene At1g77540.1 (At1g77540). The crystal structure was determined to 1.
View Article and Find Full Text PDFEukaryotic pyrimidine 5'-nucleotidase type 1 (P5N-1) catalyzes dephosphorylation of pyrimidine 5'-mononucleotides. Deficiency of P5N-1 activity in red blood cells results in nonspherocytic hemolytic anemia. The enzyme deficiency is either familial or can be acquired through lead poisoning.
View Article and Find Full Text PDFActa Crystallogr D Biol Crystallogr
May 2006
The structure of the Rieske-type ferredoxin (T4moC) from toluene 4-monooxygenase was determined by X-ray crystallography in the [2Fe-2S](2+) state at a resolution of 1.48 A using single-wavelength anomalous dispersion phasing with the [2Fe-2S] center. The structure consists of ten beta-strands arranged into the three antiparallel beta-sheet topology observed in all Rieske proteins.
View Article and Find Full Text PDFActa Crystallogr Sect F Struct Biol Cryst Commun
September 2005
The crystal structure of the human basophilic leukemia-expressed protein (BLES03, p5326, Hs.433573) was determined by single-wavelength anomalous diffraction and refined to an R factor of 18.8% (Rfree = 24.
View Article and Find Full Text PDFActa Crystallogr Sect F Struct Biol Cryst Commun
July 2005
The gene product of At3g22680 from Arabidopsis thaliana codes for a protein of unknown function. The crystal structure of the At3g22680 gene product was determined by multiple-wavelength anomalous diffraction and refined to an R factor of 16.0% (Rfree = 18.
View Article and Find Full Text PDFActa Crystallogr Sect F Struct Biol Cryst Commun
July 2005
The crystal structure of the At2g17340 protein from A. thaliana was determined by the multiple-wavelength anomalous diffraction method and was refined to an R factor of 16.9% (Rfree = 22.
View Article and Find Full Text PDFActa Crystallogr Sect F Struct Biol Cryst Commun
May 2005
The crystal structure of the gene product of At3g21360 from Arabidopsis thaliana was determined by the single-wavelength anomalous dispersion method and refined to an R factor of 19.3% (Rfree = 24.1%) at 2.
View Article and Find Full Text PDFActa Crystallogr D Biol Crystallogr
December 2005
The crystal structure of the At4g34215 protein of Arabidopsis thaliana was determined by molecular replacement and refined to an R factor of 14.6% (R(free) = 18.3%) at 1.
View Article and Find Full Text PDF