Publications by authors named "Weselake R"

Brassica oilseed species are the third most important in the world, providing approximately 15 % of the total vegetable oils. Three species (Brassica rapa, B. juncea, B.

View Article and Find Full Text PDF

The increasing global demand for vegetable oils will only be met if there are significant improvements in the productivity of the major oil crops, such as oilseed rape. Metabolic engineering offers the prospect of further gains in yield beyond that already achieved by breeding and selection but requires guidance as to the changes that need to be made. Metabolic Control Analysis, through measurement and estimation of flux control coefficients, can indicate which enzymes have the most influence on a desired flux.

View Article and Find Full Text PDF

AIL7 over-expression modulates fatty acid biosynthesis and triacylglycerol accumulation in Arabidopsis developing seeds through the transcriptional regulation of associated genes. Seed fatty acids (FAs) and triacylglycerol (TAG) contribute to many functions in plants, and seed lipids have broad food, feed and industrial applications. As a result, an enormous amount of attention has been dedicated towards uncovering the regulatory cascade responsible for the fine-tuning of the lipid biosynthetic pathway in seeds, which is regulated in part through the action of LEAFY COTYLEDON1, ABSCISSIC ACID INSENSITIVE 3, FUSCA3 and LEC2 (LAFL) transcription factors.

View Article and Find Full Text PDF

Production of hydroxy fatty acids (HFAs) in transgenic crops represents a promising strategy to meet our demands for specialized plant oils with industrial applications. The expression of Ricinus communis (castor) OLEATE 12-HYDROXYLASE (RcFAH12) in Arabidopsis has resulted in only limited accumulation of HFAs in seeds, which probably results from inefficient transfer of HFAs from their site of synthesis (phosphatidylcholine; PC) to triacylglycerol (TAG), especially at the sn-1/3 positions of TAG. Phospholipase As (PLAs) may be directly involved in the liberation of HFAs from PC, but the functions of their over-expression in HFA accumulation and distribution at TAG in transgenic plants have not been well studied.

View Article and Find Full Text PDF

Punicic acid (PuA; 18:3Δ), a conjugated linolenic acid isomer bearing three conjugated double bonds, is associated with various health benefits and has potential for industrial use. The major nature source of this unusual fatty acid is pomegranate (Punica granatum) seed oil, which contains up to 80% (w/w) of its fatty acids as PuA. Pomegranate seed oil, however, is low yielding with unstable production and thus limits the supply of PuA.

View Article and Find Full Text PDF
Article Synopsis
  • Seed-specific down-regulation of AtCESA1 and AtCESA9 genes in Arabidopsis affects seed storage compounds, offering insights for improving seed quality by reducing cellulose levels.
  • AtCESA1 down-regulation increases seed protein content by about 3% while decreasing oil content by the same percentage, while AtCESA9 does not significantly affect these components.
  • The study suggests that manipulating cellulose synthesis through molecular breeding could help redirect carbon from cellulose to more valuable compounds like oil and protein, enhancing crop seed quality.
View Article and Find Full Text PDF

Castor patatin-like phospholipase A IIIβ facilitates the exclusion of hydroxy fatty acids from phosphatidylcholine in developing transgenic Arabidopsis seeds. Hydroxy fatty acids (HFAs) are industrial useful, but their major natural source castor contains toxic components. Although expressing a castor OLEATE 12-HYDROXYLASE in Arabidopsis thaliana leads to the synthesis of HFAs in seeds, a high proportion of the HFAs are retained in phosphatidylcholine (PC).

View Article and Find Full Text PDF

Polyunsaturated fatty acids (PUFAs) such as α-linolenic acid (ALA, 18:3Δ ) have high nutritional and industrial values. In oilseed crops, PUFAs are synthesized on phosphatidylcholine (PC) and accumulated in triacylglycerol (TAG). Therefore, exploring the mechanisms that route PC-derived PUFA to TAG is essential for understanding and improving PUFA production.

View Article and Find Full Text PDF

Proteins with multifunctional regulatory domains often demonstrate structural plasticity or protein disorder, allowing the binding of multiple regulatory factors and post-translational modifications. While the importance of protein disorder is clear, it also poses a challenge for in vitro characterization. Here, we report protein intrinsic disorder in a plant molecular system, which despite its prevalence is less studied.

View Article and Find Full Text PDF

Triacylglycerol (TAG) is the major storage lipid in most terrestrial plants and microalgae, and has great nutritional and industrial value. Since the demand for vegetable oil is consistently increasing, numerous studies have been focused on improving the TAG content and modifying the fatty-acid compositions of plant seed oils. In addition, there is a strong research interest in establishing plant vegetative tissues and microalgae as platforms for lipid production.

View Article and Find Full Text PDF

Diacylglycerol acyltransferase 1 (DGAT1) catalyzes the final and committed step in the Kennedy pathway for triacylglycerol (TAG) biosynthesis and, as such, elucidating its mode of regulation is critical to understand the fundamental aspects of carbon metabolism in oleaginous crops. In this study, purified Brassica napus diacylglycerol acyltransferase 1 (BnaDGAT1) in n-dodecyl-β-d-maltopyranoside micelles was lipidated to form mixed micelles and subjected to detailed biochemical analysis. The degree of mixed micelle fluidity appeared to influence acyltransferase activity.

View Article and Find Full Text PDF

Acyl-lipids such as intracellular phospholipids, galactolipids, sphingolipids, and surface lipids play a crucial role in plant cells by serving as major components of cellular membranes, seed storage oils, and extracellular lipids such as cutin and suberin. Plant lipids are also widely used to make food, renewable biomaterials, and fuels. As such, enormous efforts have been made to uncover the specific roles of different genes and enzymes involved in lipid biosynthetic pathways over the last few decades.

View Article and Find Full Text PDF

Seed oil from flax () is enriched in α-linolenic acid (ALA; 18:3Δ ), but the biochemical processes underlying the enrichment of flax seed oil with this polyunsaturated fatty acid are not fully elucidated. Here, a potential process involving the catalytic actions of long-chain acyl-CoA synthetase (LACS) and diacylglycerol acyltransferase (DGAT) is proposed for ALA enrichment in triacylglycerol (TAG). LACS catalyzes the ATP-dependent activation of free fatty acid to form acyl-CoA, which in turn may serve as an acyl-donor in the DGAT-catalyzed reaction leading to TAG.

View Article and Find Full Text PDF

Punicic acid (PuA; 18: 3Δ ) is an unusual 18-carbon fatty acid bearing three conjugated double bonds. It has been shown to exhibit a myriad of beneficial bioactivities including anti-cancer, anti-diabetes, anti-obesity, antioxidant, and anti-inflammatory properties. Pomegranate (Punica granatum) seed oil contains approximately 80% PuA and is currently the major natural source of this remarkable fatty acid.

View Article and Find Full Text PDF

Punicic acid (PuA) is a conjugated linolenic acid (C18:3Δ) with a wide range of nutraceutic effects with the potential to reduce the incidence of a number of health disorders including diabetes, obesity, and cancer. It is the main component of seed oil from Punica granatum and Trichosanthes kirilowii. Previously, production of relatively high levels of this unusual fatty acid in the seed oil of transgenic Arabidopsis thaliana plant was accomplished by the use of A.

View Article and Find Full Text PDF

The apparent bottleneck in the accumulation of oil during seed development in some oleaginous plant species is the formation of triacylglycerol (TAG) by the acyl-CoA-dependent acylation of -1,2-diacylglycerol catalyzed by diacylglycerol acyltransferase (DGAT, EC 2.3.1.

View Article and Find Full Text PDF

Diacylglycerol acyltransferase 1 (DGAT1) is an integral membrane enzyme catalyzing the final and committed step in the acyl-coenzyme A (CoA)-dependent biosynthesis of triacylglycerol (TAG). The biochemical regulation of TAG assembly remains one of the least understood areas of primary metabolism to date. Here, we report that the hydrophilic N-terminal domain of DGAT1 (BnaDGAT1) regulates activity based on acyl-CoA/CoA levels.

View Article and Find Full Text PDF

Diacylglycerol acyltransferase 1 (DGAT1) catalyzes the acyl-CoA-dependent biosynthesis of triacylglycerol, the predominant component of seed oil. In some oil crops, including Brassica napus, the level of DGAT1 activity can have a substantial effect on triacylglycerol production. Structure-function insights into DGAT1, however, remain limited because of the lack of a three-dimensional detailed structure for this membrane-bound enzyme.

View Article and Find Full Text PDF

Enhanced levels of punicic acid were produced in the seed oil of Arabidopsis over-expressing pomegranate FATTY ACID CONJUGASE driven by heterologous promoters, among which the linin promoter was the most efficient. Fatty acids with conjugated double bonds play a special role in determining both the nutritional and industrial uses of plant oils. Punicic acid (18:3Δ ), a conjugated fatty acid naturally enriched in the pomegranate (Punica granatum) seeds, has gained increasing attention from the biotechnology community toward its production in metabolically engineered oilseed crops because of its significant health benefits.

View Article and Find Full Text PDF

GLYCEROL-3-PHOSPHATE ACYLTRANSFERASE (GPAT) genes encode enzymes involved in glycerolipid biosynthesis in plants. Ten GPAT homologues have been identified in Arabidopsis. GPATs 4-8 have been shown to be involved in the production of extracellular lipid barrier polyesters.

View Article and Find Full Text PDF

Diacylglycerol acyltransferase (DGAT) catalyzes the acyl-CoA-dependent acylation of sn-1, 2-diacylglycerol to produce triacylglycerol, which is the main component of the seed oil of Brassica oilseed species. Phylogenetic analysis of the amino acid sequences encoded by four transcriptionally active DGAT1 genes from Brassica napus suggests that the gene forms diverged over time into two clades (I and II), with representative members in each genome (A and C). The majority of the amino acid sequence differences in these forms of DGAT1, however, reside outside of motifs suggested to be involved in catalysis.

View Article and Find Full Text PDF

The demand for plant-derived oils has increased substantially over the last decade, and is sure to keep growing. While there has been a surge in research efforts to produce plants with improved oil content and quality, in most cases the enhancements have been small. To add further complexity to this situation, substantial differences in seed oil traits among years and field locations have indicated that plant lipid biosynthesis is also influenced to a large extent by multiple environmental factors such as temperature, drought, light availability and soil nutrients.

View Article and Find Full Text PDF