Publications by authors named "Weronika Janczyk"

Screening for small-molecule fragments that can lead to potent inhibitors of protein-protein interactions (PPIs) is often a laborious step as the fragments cannot dissociate the targeted PPI due to their low μM-mM affinities. Here, we describe an NMR competition assay called w-AIDA-NMR (weak-antagonist induced dissociation assay-NMR), which is sensitive to weak μM-mM ligand-protein interactions and which can be used in initial fragment screening campaigns. By introducing point mutations in the complex's protein that is not targeted by the inhibitor, we lower the effective affinity of the complex, allowing for short fragments to dissociate the complex.

View Article and Find Full Text PDF

Phosphorylation-dependent protein binding domains are crucially important for intracellular signaling pathways and thus highly relevant targets in chemical biology. By screening of chemical libraries against 12 structurally diverse phosphorylation-dependent protein binding domains, we have identified fosfosal and dexamethasone-21-phosphate as selective inhibitors of two antitumor targets: the SH2 domain of the transcription factor STAT5b and the substrate-binding domain of the peptidyl-prolyl isomerase Pin1, respectively. Both compounds are phosphate prodrugs with documented clinical use as anti-inflammatory agents in humans and were discovered with a high hit rate from a small subgroup within the screening library.

View Article and Find Full Text PDF

NMR-based drug screening methods provide the most reliable characterization of binding propensities of ligands to their target proteins. Unique to NMR is its capability to detect weak microM-mM bindings. NMR assays are, however, one of the least effective methods in terms of the amount of protein required and the time needed for acquiring NMR experiments.

View Article and Find Full Text PDF